219 resultados para TV white spaces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let H be a (real or complex) Hilbert space. Using spectral theory and properties of the Schatten–Von Neumann operators, we prove that every symmetric tensor of unit norm in HoH is an infinite absolute convex combination of points of the form xox with x in the unit sphere of the Hilbert space. We use this to obtain explicit characterizations of the smooth points of the unit ball of HoH .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let M be the Banach space of sigma-additive complex-valued measures on an abstract measurable space. We prove that any closed, with respect to absolute continuity norm-closed, linear subspace L of M is complemented and describe the unique complement, projection onto L along which has norm 1. Using this fact we prove a decomposition theorem, which includes the Jordan decomposition theorem, the generalized Radon-Nikodym theorem and the decomposition of measures into decaying and non-decaying components as particular cases. We also prove an analog of the Jessen-Wintner purity theorem for our decompositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give an example of a complete locally convex m-topology on the algebra of infinite differentiable functions on [0, 1] which is strictly coarser than the natural Frechet-topology but finer than the topology of pointwise convergence. A similar construction works on the algebra of continuous functions on [0, 1]. Using this examples we can separate different notions of diffotopy and homotopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiplicative spectrum of a complex Banach space X is the class K(X) of all (automatically compact and Hausdorff) topological spaces appearing as spectra of Banach algebras (X,*) for all possible continuous multiplications on X turning X into a commutative associative complex algebra with the unity. The properties of the multiplicative spectrum are studied. In particular, we show that K(X^n) consists of countable compact spaces with at most n non-isolated points for any separable hereditarily indecomposable Banach space X. We prove that K(C[0,1]) coincides with the class of all metrizable compact spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that for any finite ultrametric space M and any infinite-dimensional Banach space B there exists an isometric embedding of M into B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that for any Hausdorff topological vector space E over the field R there exists A subset of E such that E is homeomorphic to a subset of A x R and A x R is homeomorphic to a subset of E. Using this fact we prove that E is monotonically normal if and only if E is stratifiable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let $X$ be a real Banach space, $\omega:[0,+\infty)\to\R$ be an increasing continuous function such that $\omega(0)=0$ and $\omega(t+s)\leq\omega(t)+\omega(s)$ for all $t,s\in[0,+\infty)$. By the Osgood theorem, if $\int_{0}^1\frac{dt}{\omega(t)}=\infty$, then for any $(t_0,x_0)\in R\times X$ and any continuous map $f: R\times X\to X$ and such that $\|f(t,x)-f(t,y)\|\leq\omega(\|x-y\|)$ for all $t\in R$, $x,y\in X$, the Cauchy problem $\dot x(t)=f(t,x(t))$, $(t_0)=x_0$ has a unique solution in a neighborhood of $t_0$ . We prove that if $X$ has a complemented subspace with an unconditional Schauder basis and $\int_{0}^1\frac{dt}{\omega(t)}

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a bounded function $H : l_2\times l_2 \to R$ with continuous Frechet derivative such that for any $q_0\in l_2$ the Cauchy problem $\dot p= - {\partial H\over\partial q}$, $\dot q={\partial H\over\partial p}$, $p(0) = 0$, q(0) = q_0$ has no solutions in any neighborhood of zero in R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Descriptive characterizations of the point, the continuous, and the residual spectra of operators in Banach spaces are put forward. In particular, necessary and sufficient conditions for three disjoint subsets of the complex plane to be the point spectrum, the continuous spectrum, and the residual spectrum of a linear continuous operator in a separable Banach space are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An example of a sigma -compact infinite-dimensional pre-Hilbert space H is constructed such that any continuous linear operator T: H --> H is of the form T = lambdaI + F for some lambda is an element of R and for a finite-dimensional continuous linear operator F. A class of simple examples of pre-Hilbert spaces nonisomorphic to their closed hyperplanes is given. A sigma -compact pre-Hilbert space H isomorphic to H x R x R and nonisomorphic to H x R is also constructed.