116 resultados para Resistance to antimicrobials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES:
Quaternary ammonium compounds (QACs) are used extensively as biocides and their misuse may be contributing to the development of bacterial resistance. Although the major intrinsic resistance to QACs of Gram-negative bacteria is mediated by the action of tripartite multidrug transporters of the resistance-nodulation-division family, we aimed to test if the promiscuity of the recently characterized major facilitator superfamily multidrug transporter, MdtM, from Escherichia coli enabled it also to function in the efflux of QACs.
METHODS:
The ability of the major facilitator mdtM gene product, when overexpressed from multicopy plasmid, to protect E. coli cells from the toxic effects of a panel of seven QACs was determined using growth inhibition assays in liquid medium. Interaction between QACs and MdtM was studied by a combination of substrate binding assays using purified protein in detergent solution and transport assays using inverted vesicles.
RESULTS:
E. coli cells that overproduced MdtM were less susceptible to the cytotoxic effects of each of the QACs tested compared with cells that did not overproduce the transporter. Purified MdtM bound each QAC with micromolar affinity and the protein utilized the electrochemical proton gradient to transport QACs across the cytoplasmic membrane. Furthermore, the results suggested a functional interaction between MdtM and the tripartite resistance-nodulation-division family AcrAB-TolC efflux system.
CONCLUSIONS:
The results support a hitherto unidentified capacity for a single-component multidrug transporter of the major facilitator superfamily, MdtM, to function in the efflux of a broad range of QACs and thus contribute to the intrinsic resistance of E. coli to these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P. aeruginosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although there is currently no evidence of emerging strains of measles virus (MV) that can resist neutralization by the anti-MV antibodies present in vaccinees, certain mutations in circulating wt MV strains appear to reduce the efficacy of these antibodies. Moreover, it has been hypothesized that resistance to neutralization by such antibodies could allow MV to persist. In this study, we use a novel in vitro system to determine the molecular basis of MV's resistance to neutralization. We find that both wild-type and laboratory strain MV variants that escape neutralization by anti-MV polyclonal sera possess multiple mutations in their H, F, and M proteins. Cytometric analysis of cells expressing viral escape mutants possessing minimal mutations and their plasmid-expressed H, F, and M proteins indicates that immune resistance is due to particular mutations that can occur in any of these three proteins that affect at distance, rather than directly, the native conformation of the MV-H globular head and hence its epitopes. A high percentage of the escape mutants contain mutations found in cases of Subacute Sclerosing Panencephalitis (SSPE) and our results could potentially shed light on the pathogenesis of this rare fatal disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Evidence is accumulating to suggest that some of the diverse functions associated with BRCA1 may relate to its ability to transcriptionally regulate key downstream target genes. Here, we identify S100A7 (psoriasin), S100A8, and S100A9, members of the S100A family of calcium-binding proteins, as novel BRCA1-repressed targets. We show that functional BRCA1 is required for repression of these family members and that a BRCA1 disease–associated mutation abrogates BRCA1-mediated repression of psoriasin. Furthermore, we show that BRCA1 and c-Myc form a complex on the psoriasin promoter and that BRCA1-mediated repression of psoriasin is dependent on functional c-Myc. Finally, we show that psoriasin expression is induced by the topoisomerase IIA poison, etoposide, in the absence of functional BRCA1 and increased psoriasin expression enhances cellular sensitivity to this chemotherapeutic agent. Therefore, we identified a novel transcriptional mechanism that is likely to contribute to BRCA1-mediated resistance to etoposide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thymidylate synthase (TS) is responsible for the de novo synthesis of thymidylate, which is required for DNA synthesis and repair and which is an important target for fluoropyrimidines such as 5-fluorouracil (5-FU), and antifolates such as Tomudex (TDX), ZD9331, and multitargeted antifolate (MTA). To study the importance of TS expression in determining resistance to these agents, we have developed an MDA435 breast cancer-derived cell line with tetracycline-regulated expression of TS termed MTS-5. We have demonstrated that inducible expression of TS increased the IC(50) dose of the TS-targeted therapeutic agents 5-FU, TDX, and ZD9331 by 2-, 9- and 24-fold respectively. An IC(50) dose for MTA was unobtainable when TS was overexpressed in these cells, which indicated that MTA toxicity is highly sensitive to increased TS expression levels. The growth inhibitory effects of the chemotherapeutic agents CPT-11, cisplatin, oxaliplatin, and Taxol were unaffected by TS up-regulation. Cell cycle analyses revealed that IC(50) doses of 5-FU, TDX and MTA caused an S-phase arrest in cells that did not overexpress TS, and this arrest was overcome when TS was up-regulated. Furthermore, the S-phase arrest was accompanied by 2- to 4-fold increased expression of the cell cycle regulatory genes cyclin E, cyclin A, and cyclin dependent kinase 2 (cdk2). These results indicate that acute increases in TS expression levels play a key role in determining cellular sensitivity to TS-directed chemotherapeutic drugs by modulating the degree of S-phase arrest caused by these agents. Moreover, CPT-11, cisplatin, oxaliplatin, and Taxol remain highly cytotoxic in cells that overexpress TS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thymidylate synthase (TS) is a critical target for chemotherapeutic agents such as 5-fluorouracil (5-FU) and antifolates such as tomudex (TDX),multitargeted antifolate, and ZD9331. Using the MCF-7 breast cancer line, we have developed p53 wild-type (M7TS90) and null (M7TS90-E6) isogenic lines with inducible TS expression (approximately 6-fold induction compared with control after 48 h). In the M7TS90 line, inducible TS expression resulted in a moderate approximately 3-fold increase in 5-FU IC-50(72 h) dose and a dramatic >20-fold increase in the IC-50(72 h) doses of TDX, multitargeted antifolate, and ZD9331. S-phase cell cycle arrest and apoptosis induced by the antifolates were abrogated by TS induction. In contrast, cell cycle arrest and apoptosis induced by 5-FU was unaffected by TS expression levels. Inactivation of p53 significantly increased resistance to 5-FU and the antifolates with IC-50(72 h) doses for 5-FU and TDX of >100 and >10 microM, respectively, in the M7TS90-E6 cell line. Furthermore, p53 inactivation completely abrogated the cell cycle arrest and apoptosis induced by 5-FU. The antifolates induced S-phase arrest in the p53 null cell line; however, the induction of apoptosis by these agents was significantly reduced compared with p53 wild-type cells. Both inducible TS expression and the addition of exogenous thymidine (10 microM) blocked p53 and p21 induction by the antifolates but not by 5-FU in the M7TS90 cell line. Similarly, inducible TS expression and exogenous thymidine abrogated antifolate but not 5-FU-mediated up-regulation of Fas/CD95 in M7TS90 cells. Our results indicate that in M7TS90 cells, inducible TS expression modulates p53 and p53 target gene expression in response to TS-targeted antifolate therapies but not to 5-FU.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Novel CVD WSi2 technology with low series and contact resistance in SiGe HBTs was achieved. Specific contact resistance to Si1-xGex with 0

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It has been suggested that the presence of religious images and scenes in secular buildings of sixteenth-century date can be viewed as an expression of resistance by the native Irish to English colonial activity in the aftermath of the Munster Plantation (J. A. Delle, 1999, International Journal of Historical Archaeology 3: 11–35). Such images, however, may merely represent a continuation into the early modern period of a Medieval tradition of adorning secular houses with devotional images. If a religious symbol of native Catholic resistance to English colonization and Protestantism in Munster is to be sought then perhaps a more appropriate image would be the I.H.S. monogram—a symbol associated with the Counter Reformation and the Jesuits. The paper presents an example of the monogram located within a tower house at Gortnetubbrid in County Limerick, Ireland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ziebuhr W, Dietrich K, Trautmann M, Wilhelm M. Institut für Molekulare Infektionsbiologie, Würzburg, Germany. w.ziebuhr@mail.uni-wuerzburg.de During two clinical courses of shunt-associated meningitis in a 3-month-old child, five multiresistant S. epidermidis isolates were obtained and analyzed with regard to biofilm production and antibiotic susceptibility. Three S. epidermidis strains, which were initially isolated from the cerebrospinal fluid, produced biofilms on polystyrene tissue culture plates. Following antibiotic treatment and subsequent exchange of the shunt system, sterilization of the CSF was achieved. However, after three weeks a relapse of the infection occurred. The two S. epidermidis isolates obtained now were biofilm negative, but showed an identical resistance pattern as those from the previous infection, except that resistance to rifampicin and increased mininal inhibitory concentrations of aminoglycoside antibiotics had emerged. DNA fingerprinting by PFGE indicated the clonal origin of all isolates. However, some DNA rearrangements and differences in the IS256-specific hybridization patterns could be identified in the isolates from the second infection period that led to altered biofilm formation and increased expression of aminoglycoside resistance traits. The data evidence that variation of biofilm expression occurs in vivo during an infection and highlight the extraordinary genome flexibility of pathogenic S. epidermidis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: In an attempt to identify genes that are involved in resistance to SN38, the active metabolite of irinotecan (also known as CPT-11), we carried out DNA microarray profiling of matched HCT116 human colon cancer parental cell lines and SN38-resistant cell lines following treatment with SN38 over time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The marine oligotrophic ultramicrobacterium Sphingomonas alaskensis RB2256 has a physiology that is distinctly different from that of typical copiotrophic marine bacteria, such as Vibrio angustum S14. This includes a high level of inherent stress resistance and the absence of starvation-induced stress resistance to hydrogen peroxide. In addition to periods of starvation in the ocean, slow nutrient-limited growth is likely to be encountered by oligotrophic bacteria for substantial periods of time. In this study we examined the effects of growth rate on the resistance of S. alaskensis RB2256 to hydrogen peroxide under carbon or nitrogen limitation conditions in nutrient-limited chemostats. Glucose-limited cultures of S. alaskensis RB2256 at a specific growth rate of 0.02 to 0.13 h(-1) exhibited 10,000-fold-greater viability following 60 min of exposure to 25 mM hydrogen peroxide than tells growing at a rate of 0.14 h(-1) or higher. Growth rate control of stress resistance was found to be specific to carbon and energy limitation in this organism. In contrast, V. angustum S14 did not exhibit growth rate-dependent stress resistance. The dramatic switch in stress resistance that was observed under carbon and energy limitation conditions has not been described previously in bacteria and thus may be a characteristic of the oligotrophic ultramicrobacterium, Catalase activity varied marginally and did not correlate with the growth rate, indicating that hydrogen peroxide breakdown was not the primary mechanism of resistance. More than 1,000 spots were resolved on silver-stained protein gels for cultures growing at rates of 0.026, 0.076, and 0.18 h(-1). Twelve protein spots had intensities that varied by more than twofold between growth rates and hence are likely to be important for growth rate-dependent stress resistance. These studies demonstrated the crucial role that nutrient limitation plays in the physiology of S. alaskensis RB2256, especially under oxidative stress conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance to antimicrobial agents undermines our ability to treat bacterial infections. It attracts intense media and political interest and impacts on personal health and costs to health infrastructures. Bacteria have developed resistance to all licensed antibacterial agents, and their ability to become resistant to unlicensed agents is often demonstrated during the development process. Conventional approaches to antimicrobial development, involving modification of existing agents or production of synthetic derivatives, are unlikely to deliver the range or type of drugs that will be needed to meet all future requirements. Although many companies are seeking novel targets, further radical approaches to both antimicrobial design and the reversal of resistance are now urgently required. In this article, we discuss ‘antisense’ (or ‘antigene’) strategies to inhibit resistance mechanisms at the genetic level. These offer an innovative approach to a global problem and could be used to restore the efficacy of clinically proven agents. Moreover, this strategy has the potential to overcome critical resistances, not only in the so-called ‘superbugs’ (methicillin-resistant Staphylococcus aureus, glycopeptide-resistant enterococci and multidrug-resistant strains of Acinetobacter baumannii, and Pseudomonas aeruginosa), but in resistant strains of any bacterial species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous research shows that approximately half of the coagulase-negative staphylococci (CNS) isolated from patients in the intensive care unit (ICU) at Belfast City Hospital were resistant to methicillin. The presence of this relatively high proportion of methicillin-resistance genetic material gives rise to speculation that these organisms may act as potential reservoirs of methicillinresistance genetic material to methicillin-sensitive Staphylococcus aureus (MSSA). Mechanisms of horizontal gene transfer from PBP2a-positive CNS to MSSA, potentially transforming MSSA to MRSA, aided by electroporation-type activities such as transcutaneous electrical nerve stimulation (TENS), should be considered. Methicillin-resistant CNS (MR-CNS) isolates are collected over a two-month period from a variety of clinical specimen types, particularly wound swabs. The species of all isolates are confirmed, as well as their resistance to oxacillin by standard disc diffusion assays. In addition, MSSA isolates are collected over the same period and confirmed as PBP2a-negative. Electroporation experiments are designed to mimic the time/voltage combinations used commonly in the clinical application of TENS. No transformed MRSA were isolated and all viable S. aureus cells remained susceptible to oxacillin and PBP2a-negative. Experiments using MSSA pre-exposed to sublethal concentrations of oxacillin (0.25 µg/mL) showed no evidence of methicillin gene transfer and the generation of an MRSA. The study showed no evidence of horizontal transfer of methicillin resistance genetic material from MR-CNS to MSSA. These data support the belief that TENS and the associated time/voltage combinations used do not increase conjugational transposons or facilitate horizontal gene transfer from MR-CNS to MSSA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resistance to cisplatin chemotherapy remains a major hurdle preventing effective treatment of many solid cancers. BAX and BAK are pivotal regulators of the mitochondrial apoptosis pathway, however little is known regarding their regulation in cisplatin resistant cells. Cisplatin induces DNA damage in both sensitive and resistant cells, however the latter exhibits a failure to initiate N-terminal exposure of mitochondrial BAK or mitochondrial SMAC release. Both phenotypes are highly sensitive to mitochondrial permeabilisation induced by exogenous BH3 domain peptides derived from BID, BIM, NOXA (which targets MCL-1 and A1), and there is no significant change in their prosurvival BCL2 protein expression profiles. Obatoclax, a small molecule inhibitor of pro-survival BCL-2 family proteins including MCL-1, decreases cell viability irrespective of platinum resistance status across a panel of cell lines selected for oxaliplatin resistance. In summary, selection for platinum resistance is associated with a block of mitochondrial death signalling upstream of BAX/BAK activation. Conservation of sensitivity to BH3 domain induced apoptosis can be exploited by agents such as obatoclax, which directly target the mitochondria and BCL-2 family.