143 resultados para Genome-Wide Association
Resumo:
We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
Resumo:
Purpose. Keratoconus is a progressive disorder of the cornea that can lead to severe visual impairment or blindness. Although several genomic regions have been linked to rare familial forms of keratoconus, no genes have yet been definitively identified for common forms of the disease. Methods. Two genome-wide association scans were undertaken in parallel. The first used pooled DNA from an Australian cohort, followed by typing of top-ranked single-nucleotide polymorphisms (SNPs) in individual DNA samples. The second was conducted in individually genotyped patients, and controls from the USA. Tag SNPs around the hepatocyte growth factor (HGF) gene were typed in three additional replication cohorts. Serum levels of HGF protein in normal individuals were assessed with ELISA and correlated with genotype. Results. The only SNP observed to be associated in both the pooled discovery and primary replication cohort was rs1014091, located upstream of the HGF gene. The nearby SNP rs3735520 was found to be associated in the individually typed discovery cohort (P = 6.1 × 10 ). Genotyping of tag SNPs around HGF revealed association at rs3735520 and rs17501108/rs1014091 in four of the five cohorts. Meta-analysis of all five datasets together yielded suggestive P values for rs3735520 (P = 9.9 × 10 ) and rs17501108 (P = 9.9 × 10 ). In addition, SNP rs3735520 was found to be associated with serum HGF level in normal individuals (P = 0.036). Conclusions. Taken together, these results implicate genetic variation at the HGF locus with keratoconus susceptibility. © 2011 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
The PLZF/RARA fusion protein generated by the t(11;17)(q23;q21) translocation in acute promyelocytic leukaemia (APL) is believed to act as an oncogenic transcriptional regulator recruiting epigenetic factors to genes important for its transforming potential. However, molecular mechanisms associated with PLZF/RARA-dependent leukaemogenesis still remain unclear. We searched for specific PLZF/RARA target genes by ChIP-on-chip in the haematopoietic cell line U937 conditionally expressing PLZF/RARA. By comparing bound regions found in U937 cells expressing endogenous PLZF with PLZF/RARA-induced U937 cells, we isolated specific PLZF/RARA target gene promoters. We next analysed gene expression profiles of our identified target genes in PLZF/RARA APL patients and analysed DNA sequences and epigenetic modification at PLZF/RARA binding sites. We identify 413 specific PLZF/RARA target genes including a number encoding transcription factors involved in the regulation of haematopoiesis. Among these genes, 22 were significantly down regulated in primary PLZF/RARA APL cells. In addition, repressed PLZF/RARA target genes were associated with increased levels of H3K27me3 and decreased levels of H3K9K14ac. Finally, sequence analysis of PLZF/RARA bound sequences reveals the presence of both consensus and degenerated RAREs as well as enrichment for tissue-specific transcription factor motifs, highlighting the complexity of targeting fusion protein to chromatin. Our study suggests that PLZF/RARA directly targets genes important for haematopoietic development and supports the notion that PLZF/RARA acts mainly as an epigenetic regulator of its direct target genes.
Resumo:
The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63.
Resumo:
Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.
Resumo:
Men and women differ statistically in the relative lengths of their index and ring fingers; and the ratio of these lengths has been used as a biomarker for prenatal testosterone. The ratio has been correlated with a wide range of traits and conditions including prostate cancer, obesity, autism, ADHD, and sexual orientation. In a genome-wide association study of 979 healthy adults, we find that digit ratio is strongly associated with variation upstream of SMOC1 (rs4902759: P = 1.41 × 10(-8)) and a meta-analysis of this and an independent study shows a probability of P = 1.5 × 10(-11). The protein encoded by SMOC1 has recently been shown to play a critical role in limb development; its expression in prostate tissue is dependent on sex hormones, and it has been implicated in the sexually dimorphic development of the gonads. We put forward the hypothesis that SMOC1 provides a link between prenatal hormone exposure and digit ratio.
Resumo:
Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this
ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4 but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment, gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further development of gene ranking strategies using more carefully selected sources of information is warranted.
Resumo:
From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.
Resumo:
PURPOSE. We conducted a genome-wide association study to identify genetic factors that contribute to the etiology of heterophoria.
METHODS. We measured near and far vertical and horizontal phorias in 988 healthy adults aged 16 to 40 using the Keystone telebinocular with plates 5218 and 5219. We regressed degree of phoria against genotype at 642758 genetic loci. To control for false positives, we applied the conservative genome-wide permutation test to our data.
RESULTS. A locus at 6p22.2 was found to be associated with the degree of near horizontal phoria (P = 2.3 × 10 ). The P value resulting from a genome-wide permutation test was 0.014.
CONCLUSIONS. The strongest association signal arose from an intronic region of the gene ALDH5A1, which encodes the mitochondrial enzyme succinic semialdehyde dehydrogenase (SSADH), an enzyme involved in γ-aminobutyric acid metabolism. Succinic semialdehyde dehydrogenase deficiency, resulting from mutations of ALDH5A1, causes a variety of neural and behavioral abnormalities, including strabismus. Variation in ALDH5A1 is likely to contribute to degree of horizontal phoria.
Resumo:
Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2)
Resumo:
A methylation-based EWAS on carefully phenotyped individuals with Parkinson’s disease (PD) was conducted to reveal prioritised genes and pathways with statistically significant and sizable changes in PD and in the anxiety that often accompanies it. This was followed by subsequent replication of top-ranked CpG sites. Using the Infinium® HumanMethylation 450K beadchip (Illumina Inc., USA), twenty unique genes with a sizable difference in methylation (P adjusted < 0.05, Δβ ≥ 0.2), after correction for multiple testing, were identified between PD and controls, while seventeen were identified between PD with anxiety and PD without anxiety. Twelve top ranked, significantly associated loci in PD were evaluated in an independent replicate population using Sequenom EpiTYPER for 219 individuals with similar phenotypes to the cross-sectional case–control discovery design. FANCC cg14115740 and TNKS2 cg11963436 show significant differential methylation between PD cases and controls using both techniques and their Δβ values, which have the same direction of effect, are reasonable to warrant further investigation
Resumo:
In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.
Resumo:
Kidneys are highly aerobic organs that are critically dependent on the normal functioning of mitochondria. Genetic variations disrupting mitochondrial function are associated with multifactorial disorders including kidney disease. This study sequenced the entire mitochondrial genome in a renal transplant cohort of 64 individuals, using next-generation sequencing, to evaluate the association of genetic variants with IgA nephropathy and end-stage renal disease (ESRD, n = 100).