126 resultados para CANCER-CELL CYTOTOXICITY
Resumo:
We investigated whether BRCA1 mRNA expression levels may represent a biomarker of survival in sporadic epithelial ovarian cancer following chemotherapy treatment. EXPERIMENTAL DESIGN: The effect of loss of BRCA1 expression on chemotherapy response in ovarian cancer was measured in vitro using dose inhibition assays and Annexin V flow cytometry. Univariate and multivariate analyses were done to evaluate the relationship between BRCA1 mRNA expression levels and survival after chemotherapy treatment in 70 fresh frozen ovarian tumors. RESULTS: We show that inhibition of endogenous BRCA1 expression in ovarian cancer cell lines results in increased sensitivity to platinum therapy and decreased sensitivity to antimicrotubule agents. In addition, we show that patients with low/intermediate levels of BRCA1 mRNA have a significantly improved overall survival following treatment with platinum-based chemotherapy in comparison with patients with high levels of BRCA1 mRNA (57.2 versus 18.2 months; P = 0.0017; hazard ratio, 2.9). Furthermore, overall median survival for higher-BRCA1-expressing patients was found to increase following taxane-containing chemotherapy (23.0 versus 18.2 months; P = 0.12; hazard ratio, 0.53). CONCLUSIONS: We provide evidence to support a role for BRCA1 mRNA expression as a predictive marker of survival in sporadic epithelial ovarian cancer.
Resumo:
Human cathepsin L along with cathepsin S, K, and V are collectively known as cathepsin L-like proteases due to their high homology. The overexpression and aberrant activity of each of these proteases has been implicated in tumorigenesis. These proteases contain propeptide domains that can potently inhibit both their cognate protease and other proteases within the cathepsin L-like subfamily. In this investigation, we have produced the cathepsin S propeptide recombinantly and have shown that it is a potent inhibitor of the peptidolytic, elastinolytic, and gelatinolytic activities of the cathepsin L-like proteases. In addition, we show that this peptide is capable of significantly attenuating tumor cell invasion in a panel of human cancer cell lines. Furthermore, fusion of an IgG Fc-domain to the COOH terminus of the propeptide resulted in a chimeric protein with significantly enhanced ability to block tumor cell invasion. This Fc fusion protein exhibited enhanced stability in cell-based assays in comparison with the unmodified propeptide species. This approach for the combined inhibition of the cathepsin L-like proteases may prove useful for the further study in cancer and other conditions where their aberrant activity has been implicated. Furthermore, this strategy for simultaneous inhibition of multiple cysteine cathepsins may represent the basis for novel therapeutics to attenuate tumorigenesis.
Resumo:
A series of benzothiazole-substituted trisbipyridine ruthenium(II) analogues {[Ru(bpy)(2)(4,5'-bbtb)](2+), [Ru(bpy)(2)(5,5'-bbtb)](2+) and [Ru(bpy)(2)(5-mbtb)](2+) [bpy is 2,2'-bipyridine, bbtb is bis(benzothiazol-2-yl)-2,2'-bipyridine, 5-mbtb is 5-(benzothiazol-2-yl),5'-methyl-2,2'-bipyridine]} have been prepared and compared with the complex [Ru(bpy)(2)(4,4'-bbtb)](2+) reported previously. From the UV-vis spectral studies, substitution at the 5-position of the bpy causes the ligand-centred transitions to occur at considerably lower energy than for those with the functionality at the 4-position, while at the same time causing the emission to be effectively quenched. However, substitution at the 4-position causes the metal-to-ligand charge transfer to occur at lower energies. Fluorescent intercalator displacement studies indicate that the doubly substituted complexes displace ethidium bromide from a range of oligonucleotides, with the greater preference shown for bulge and hairpin sequences by the Lambda enantiomer. Since the complexes only show small variation in the UV-vis spectra on the introduction of calf thymus DNA and a small increase in fluorescence they do not appear to be intercalators, but appear to associate within one of the grooves. All of the reported bisbenzothiazole complexes show reasonable cytotoxicity against a range of human cancer cell lines.
Resumo:
Previous reports have shown that DNA methylation profiles within primary human malignant tissues are altered when these cells are transformed into cancer cell lines. However, it is unclear if similar differences in DNA methylation profiles exist between DNA derived from peripheral blood leukocytes (PBLs) and corresponding Epstein-Barr Virus transformed lymphoblastoid cell lines (LCLs). To assess the utility of LCLs as a resource for methylation studies we have compared DNA methylation profiles in promoter and 5' regions of 318 genes in PBL and LCL sample pairs from patients with type 1 diabetes with or without nephropathy. We identified a total of 27 (similar to 8%) genes that revealed different DNA methylation profiles in PBL compared with LCL-derived DNA samples. In conclusion, although the profiles for most promoter regions were similar between PBL-LCL pairs, our results indicate that LCL-derived DNA may not be suitable for DNA methylation studies at least in diabetic nephropathy.
Resumo:
Polyomavirus enhancer activator 3 protein (Pea3), also known as ETV4, is a member of the Ets-transcription factor family, which promotes metastatic progression in various types of solid cancer. Pea3-driven epithelial-mesenchymal transition (EMT) has been described in lung and ovarian cancers. The mechanisms of Pea3-induced EMT, however, are largely unknown. Here we show that Pea3 overexpression promotes EMT in human breast epithelial cells through transactivation of Snail (SNAI1), an activator of EMT. Pea3 binds to the human Snail promoter through the two proximal Pea3 binding sites and enhances Snail expression. In addition, knockdown of Pea3 in invasive breast cancer cells results in down-regulation of Snail, partial reversal of EMT, and reduced invasiveness in vitro. Moreover, knockdown of Snail partially rescues the phenotype induced by Pea3 overexpression, suggesting that Snail is one of the mediators bridging Pea3 and EMT, and thereby metastatic progression of the cancer cells. In four breast cancer patient cohorts whose microarray and survival data were obtained from the Gene Expression Omnibus database, Pea3 and Snail expression are significantly correlated with each other and with overall survival of breast cancer patients. We further demonstrate that nuclear localization of Pea3 is associated with Snail expression in breast cancer cell lines and is an independent predictor of overall survival in a Chinese breast cancer patient cohort. In conclusion, our results suggest that Pea3 may be an important prognostic marker and a therapeutic target for metastatic progression of human breast cancer. © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that Delta Np63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform Delta Np63 gamma along with transcription factor isoforms AP-2 alpha and AP-2 gamma. BRCA1 required Delta Np63 gamma and AP-2 gamma to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the Delta Np63 isoforms. In mammary stem/progenitor cells, siRNA- mediated knockdown of Delta Np63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of Delta Np63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-Delta Np63 signaling are key events in the pathogenesis of basal-like breast cancer. Cancer Res; 71( 5); 1933-44. (c) 2011 AACR.
Resumo:
Predicting long-term outcome after breast-cancer diagnosis remains problematic, particularly for patients with clinically small, axillary lymph node- negative tumours, Evidence suggests that the lectin Helix pomatia agglutinin (HPA) identifies oligosaccharides associated with poor-prognosis cancer. Our aim was to identify oligosaccharides that bind HPA in aggressive breast cancers. Breast-cancer cell lines (MCF-7, BT-549 and BT-20) and a cell line From human milk (HBL-100), which showed a range of HPA-binding intensities, were used to extract HPA-binding glycoproteins, Oligosaccharides were released using anhydrous hydrazine and separated on a range of HPLC matrices. We investigated whether HPA-binding oligosaccharides from cell lines were present in human breast-cancer tissues, using 69 breast-cancer specimens from patients with between 5 and 10 years' follow-up. A monosialylated oligosaccharide was over-expressed in the cell line that bound HPA strongly. Further analysis by normal-phase HPLC showed that the 2-aminobenzamide-conjugated oligosaccharide had a hydrodynamic volume of 4.58 glucose units (HPAgly 1), Increased expression of HPAgly 1 was associated with HPA staining of breast-cancer specimens (Student's t-test p = 0.025). Analysis of oligosaccharide levels and disease-free survival after treatment for breast cancer indicated a shorter disease-free interval for patients with elevated levels of HPAgly 1, This is the first time that histochemical lectin staining has been correlated with biochemical mapping of oligosaccharides, Using this approach, we have identified a monosialylated HPA lectin-binding oligosaccharide present in breast-cancer cells grown in vitro which is elevated in breast-cancer specimens that bind the lectin, (C) 2001 Wiley-Liss, Inc.
Resumo:
Understanding the determinants of resistance of 5-fluorouracil (5FU) is of significant value to optimizing administration of the drug, and introducing novel agents and treatment strategies. Here, the expression of 92 genes involved in 5FU transport, metabolism, co-factor (folate) metabolism and downstream effects was measured by real-time PCR low density arrays in 14 patient-derived colorectal cancer xenografts characterized for 5FU resistance. Candidate gene function was tested by siRNA and uridine modulation, and immunoblotting, apoptosis and cell cycle analysis. Predictive significance was tested by immunohistochemistry of tumors from 125 stage III colorectal cancer patients treated with and without 5FU. Of 8 genes significantly differentially expressed between 5FU sensitive and resistant xenograft tumors, CTPS2 was the gene with the highest probability of differential expression (p = 0.008). Reduction of CTPS2 expression by siRNA increased the resistance of colorectal cancer cell lines DLD1 and LS174T to 5FU and its analog, FUDR. CTPS2 siRNA significantly reduced cell S-phase accumulation and apoptosis following 5FU treatment. Exposure of cells to uridine, a precursor to the CTPS2 substrate uridine triphosphate, also increased 5FU resistance. Patients with low CTPS2 did not gain a survival benefit from 5FU treatment (p = 0.072), while those with high expression did (p = 0.003). Low CTPS2 expression may be a rationally-based determinant of 5FU resistance.
Resumo:
Purpose: The runt-related transcription factor, Runx2 may have an oncogenic role in mediating metastatic events in breast cancer, but whether Runx2 has a role in the early phases of breast cancer development is not clear. We examined the expression of Runx2 and its relationship with oestrogen receptor (ER) and progesterone receptor (PR) in breast cancer cell lines and tissues.
Resumo:
In intestinal epithelial cells, inactivation of APC, a key regulator of the Wnt pathway, activates beta-catenin to initiate tumorigenesis. However, other alterations may be involved in intestinal tumorigenesis. Here we found that RUNX3, a gastric tumor suppressor, forms a ternary complex with beta-catenin/7CF4 and attenuates Wnt signaling activity. A significant fraction of human sporadic colorectal adenomas and Runx3(+/-) mouse intestinal adenomas showed inactivation of RUNX3 without apparent beta-catenin accumulation, indicating that RUNX3 inactivation independently induces intestinal adenomas. In human colon cancers, RUNX3 is frequently inactivated with concomitant beta-catenin accumulation, suggesting that adenomas induced by inactivation of RUNX3 may progress to malignancy. Taken together, these data demonstrate that RUNX3 functions as a tumor suppressor by attenuating Wnt signaling.
Resumo:
Proteomic and transcriptomic platforms both play important roles in cancer research, with differing strengths and limitations. Here, we describe a proteo-transcriptomic integrative strategy for discovering novel cancer biomarkers, combining the direct visualization of differentially expressed proteins with the high-throughput scale of gene expression profiling. Using breast cancer as a case example, we generated comprehensive two-dimensional electrophoresis (2DE)/mass spectrometry (MS) proteomic maps of cancer (MCF-7 and HCC-38) and control (CCD-1059Sk) cell lines, identifying 1724 expressed protein spots representing 484 different protein species. The differentially expressed cell-line proteins were then mapped to mRNA transcript databases of cancer cell lines and primary breast tumors to identify candidate biomarkers that were concordantly expressed at the gene expression level. Of the top nine selected biomarker candidates, we reidentified ANX1, a protein previously reported to be differentially expressed in breast cancers and normal tissues, and validated three other novel candidates, CRAB, 6PGL, and CAZ2, as differentially expressed proteins by immunohistochemistry on breast tissue microarrays. In total, close to half (4/9) of our protein biomarker candidates were successfully validated. Our study thus illustrates how the systematic integration of proteomic and transcriptomic data from both cell line and primary tissue samples can prove advantageous for accelerating cancer biomarker discovery.
Resumo:
The recent identification of somatic mutations in the catalytic region of PIK3 (PIK3CA) in breast cancer and demonstration of their oncogenic function has implicated PIK3CA in mammary carcinogenesis. To investigate possible ethnic differences in patterns of PIK3CA mutations in Singaporean Chinese breast cancer and to characterize these in a panel of cell lines, we sequenced exons 9 and 20 in 80 primary tumors, 19 breast cancer cell lines and 7 normal human mammary epithelial cells (HMECs). Searching for novel hotspots of mutation, we sequenced additional exons ( 1, 2, 6, 7, 14 and 18) in 20 primary tumors and 6 breast cancer cell lines. We detected 33 point mutations in 31 of 80 (39%) breast cancers, and 11 mutations in 10 of 19 (53%) breast cancer cell lines. No mutations were detected in normal breast tissue adjacent to the tumor, or in the 6 normal HMECs. The exon 20 A3140G (H1047R) substitution was identified most frequently (22/31, 71%) and showed a significant association with patient age ( p = 0.043) and stage of the disease ( p = 0.025), but not with ER/PR status or histological grade of the tumor. The incidence of point mutations in PIK3CA, the A3140G substitution in particular, in Singapore breast cancers are among the most frequent reported to date for any gene in breast cancer. The results suggest that mutation of PIK3CA might contribute to development of early stage breast cancer and could provide a potent target for early diagnosis and therapy.
Resumo:
Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.
Resumo:
We report a novel class of biaryl polyamides highly selective for G-quadruplex DNA, and with significant cytotoxicity in several cancer cell lines; they form planar U-shaped structures that match the surface area dimensions of a terminal G-quartet in quadruplex structures rather than the grooves of duplex DNA.