72 resultados para Biology, Bioinformatics|Computer Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When implementing autonomic management of multiple non-functional concerns a trade-off must be found between the ability to develop independently management of the individual concerns (following the separation of concerns principle) and the detection and resolution of conflicts that may arise when combining the independently developed management code. Here we discuss strategies to establish this trade-off and introduce a model checking based methodology aimed at simplifying the discovery and handling of conflicts arising from deployment-within the same parallel application-of independently developed management policies. Preliminary results are shown demonstrating the feasibility of the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of learning from imbalanced data is of critical importance in a large number of application domains and can be a bottleneck in the performance of various conventional learning methods that assume the data distribution to be balanced. The class imbalance problem corresponds to dealing with the situation where one class massively outnumbers the other. The imbalance between majority and minority would lead machine learning to be biased and produce unreliable outcomes if the imbalanced data is used directly. There has been increasing interest in this research area and a number of algorithms have been developed. However, independent evaluation of the algorithms is limited. This paper aims at evaluating the performance of five representative data sampling methods namely SMOTE, ADASYN, BorderlineSMOTE, SMOTETomek and RUSBoost that deal with class imbalance problems. A comparative study is conducted and the performance of each method is critically analysed in terms of assessment metrics. © 2013 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-world graphs or networks tend to exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Much effort has been directed into creating realistic and tractable models for unlabelled graphs, which has yielded insights into graph structure and evolution. Recently, attention has moved to creating models for labelled graphs: many real-world graphs are labelled with both discrete and numeric attributes. In this paper, we presentAgwan (Attribute Graphs: Weighted and Numeric), a generative model for random graphs with discrete labels and weighted edges. The model is easily generalised to edges labelled with an arbitrary number of numeric attributes. We include algorithms for fitting the parameters of the Agwanmodel to real-world graphs and for generating random graphs from the model. Using real-world directed and undirected graphs as input, we compare our approach to state-of-the-art random labelled graph generators and draw conclusions about the contribution of discrete vertex labels and edge weights to graph structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very high speed and low area hardware architectures of the SHACAL-1 encryption algorithm are presented in this paper. The SHACAL algorithm was a submission to the New European Schemes for Signatures, Integrity and Encryption (NESSIE) project and it is based on the SHA-1 hash algorithm. To date, there have been no performance metrics published on hardware implementations of this algorithm. A fully pipelined SHACAL-1 encryption architecture is described in this paper and when implemented on a Virtex-II X2V4000 FPGA device, it runs at a throughput of 17 Gbps. A fully pipelined decryption architecture achieves a speed of 13 Gbps when implemented on the same device. In addition, iterative architectures of the algorithm are presented. The SHACAL-1 decryption algorithm is derived and also presented in this paper, since it was not provided in the submission to NESSIE. © Springer-Verlag Berlin Heidelberg 2003.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience obtained in the support of mobile learning using podcast audio is reported. The paper outlines design, storage and distribution via a web site. An initial evaluation of the uptake of the approach in a final year computing module was undertaken. Audio objects were tailored to meet different pedagogical needs resulting in a repository of persistent glossary terms and disposable audio lectures distributed by podcasting. An aim of our approach is to document the interest from the students, and evaluate the potential of mobile learning for supplementing revision

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cybercriminals ramp up their efforts with sophisticated techniques while defenders gradually update their typical security measures. Attackers often have a long-term interest in their targets. Due to a number of factors such as scale, architecture and nonproductive traffic however it makes difficult to detect them using typical intrusion detection techniques. Cyber early warning systems (CEWS) aim at alerting such attempts in their nascent stages using preliminary indicators. Design and implementation of such systems involves numerous research challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This paper discusses such challenges and presents the reader with compelling motivation. A carefully deployed empirical analysis using a real world attack scenario and a real network traffic capture is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stealthy attackers move patiently through computer networks - taking days, weeks or months to accomplish their objectives in order to avoid detection. As networks scale up in size and speed, monitoring for such attack attempts is increasingly a challenge. This paper presents an efficient monitoring technique for stealthy attacks. It investigates the feasibility of proposed method under number of different test cases and examines how design of the network affects the detection. A methodological way for tracing anonymous stealthy activities to their approximate sources is also presented. The Bayesian fusion along with traffic sampling is employed as a data reduction method. The proposed method has the ability to monitor stealthy activities using 10-20% size sampling rates without degrading the quality of detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes the design and implementation of a novel low cost virtual rugby decision making interactive for use in a visitor centre. Original laboratory-based experimental work in decision making in rugby, using a virtual reality headset [1] is adapted for use in a public visitor centre, with consideration given to usability, costs, practicality and health and safety. Movement of professional rugby players was captured and animated within a virtually recreated stadium. Users then interact with these virtual representations via use of a lowcost sensor (Microsoft Kinect) to attempt to block them. Retaining the principles of perception and action, egocentric viewpoint, immersion, sense of presence, representative design and game design the system delivers an engaging and effective interactive to illustrate the underlying scientific principles of deceptive movement. User testing highlighted the need for usability, system robustness, fair and accurate scoring, appropriate level of difficulty and enjoyment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new learning models has been of great importance throughout recent years, with a focus on creating advances in the area of deep learning. Deep learning was first noted in 2006, and has since become a major area of research in a number of disciplines. This paper will delve into the area of deep learning to present its current limitations and provide a new idea for a fully integrated deep and dynamic probabilistic system. The new model will be applicable to a vast number of areas initially focusing on applications into medical image analysis with an overall goal of utilising this approach for prediction purposes in computer based medical systems.