Evaluation of sampling methods for learning from imbalanced data
Data(s) |
28/08/2013
|
---|---|
Resumo |
<p>The problem of learning from imbalanced data is of critical importance in a large number of application domains and can be a bottleneck in the performance of various conventional learning methods that assume the data distribution to be balanced. The class imbalance problem corresponds to dealing with the situation where one class massively outnumbers the other. The imbalance between majority and minority would lead machine learning to be biased and produce unreliable outcomes if the imbalanced data is used directly. There has been increasing interest in this research area and a number of algorithms have been developed. However, independent evaluation of the algorithms is limited. This paper aims at evaluating the performance of five representative data sampling methods namely SMOTE, ADASYN, BorderlineSMOTE, SMOTETomek and RUSBoost that deal with class imbalance problems. A comparative study is conducted and the performance of each method is critically analysed in terms of assessment metrics. © 2013 Springer-Verlag.</p> |
Identificador |
http://dx.doi.org/10.1007/978-3-642-39479-9_47 http://www.scopus.com/inward/record.url?scp=84882745695&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Goel , G , Maguire , L , Li , Y & McLoone , S 2013 , Evaluation of sampling methods for learning from imbalanced data . in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) . vol. 7995 LNCS , Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , vol. 7995 LNCS , pp. 392-401 , 9th International Conference on Intelligent Computing, ICIC 2013 , Nanning , China , 28-31 July . DOI: 10.1007/978-3-642-39479-9_47 |
Palavras-Chave | #imbalanced data #sampling methods #support vector machines #/dk/atira/pure/subjectarea/asjc/1700 #Computer Science(all) #/dk/atira/pure/subjectarea/asjc/2600/2614 #Theoretical Computer Science |
Tipo |
contributionToPeriodical |