62 resultados para selectively-excited
Resumo:
Transcription byRNApolymerase I (Pol-I) is the main driving force behind ribosome biogenesis, a fundamental cellular process that requires the coordinated transcription of all three nuclear polymerases. Increased Pol-I transcription and the concurrent increase in ribosome biogenesis has been linked to the high rates of proliferation in cancers. The ellipticine family contains a number of potent anticancer therapeutic agents, some having progressed to stage I and II clinical trials; however, the mechanism by which many of the compounds work remains unclear. It has long been thought that inhibition of Top2 is the main reason behind the drugs antiproliferative effects. Here we report that a number of the ellipticines, including 9-hydroxyellipticine, are potent and specific inhibitors of Pol-I transcription, with IC50 in vitro and in cells in the nanomolar range. Essentially, the drugs did not affect Pol-II and Pol-III transcription, demonstrating a high selectivity.Wehave shown that Pol-I inhibition occurs by a p53-, ATM/ATR-, and Top2-independent mechanism. We discovered that the drug influences the assembly and stability of preinitiation complexes by targeting the interaction between promoter recognition factor SL1 and the rRNA promoter. Our findings will have an impact on the design and development of novel therapeutic agents specifically targeting ribosome biogenesis.
Resumo:
yambo is an ab initio code for calculating quasiparticle energies and optical properties of electronic systems within the framework of many-body perturbation theory and time-dependent density functional theory. Quasiparticle energies are calculated within the GW approximation for the self-energy. Optical properties are evaluated either by solving the Bethe-Salpeter equation or by using the adiabatic local density approximation. yambo is a plane-wave code that, although particularly suited for calculations of periodic bulk systems, has been applied to a large variety of physical systems. yambo relies on efficient numerical techniques devised to treat systems with reduced dimensionality, or with a large number of degrees of freedom. The code has a user-friendly command-line based interface, flexible 110 procedures and is interfaced to several publicly available density functional ground-state codes.
Resumo:
The process of diffusive shock acceleration relies on the efficacy with which hydromagnetic waves can scatter charged particles in the precursor of a shock. The growth of self-generated waves is driven by both resonant and non-resonant processes. We perform high-resolution magnetohydrodynamic simulations of the non-resonant cosmic ray driven instability, in which the unstable waves are excited beyond the linear regime. In a snapshot of the resultant field, particle transport simulations are carried out. The use of a static snapshot of the field is reasonable given that the Larmor period for particles is typically very short relative to the instability growth time. The diffusion rate is found to be close to, or below, the Bohm limit for a range of energies. This provides the first explicit demonstration that self-excited turbulence reduces the diffusion coefficient and has important implications for cosmic-ray transport and acceleration in supernova remnants.
Resumo:
The solution of the time-dependent Schrodinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600397]
Resumo:
Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.
Resumo:
The interactions of epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) with the epidermal growth factor receptor (EGFR) were examined by insertion mutagenesis of the receptor. Seventeen insertions were made throughout a construct containing only the extracellular domain. This truncated receptor (sEGFR) was secreted and had a dissociation constant similar to that of the full-length solubilized receptor. Receptors with insertions within subdomain III were not secreted. Two receptors with insertions at positions 291 and 474, which border subdomain III, have significantly decreased binding to both EGF and TGF alpha relative to wild type. This confirms previous work demonstrating that subdomain III forms the primary binding site for EGF and TGF alpha. Four of the mutants within subdomain II had a decreased binding to TGF alpha relative to wild type, but had wild type binding to EGF. These results suggest that a region within subdomain II may selectively regulate the binding of TGF alpha. Two receptors which contained insertions within subdomains II and IV, approximately equidistant from the center of subdomain III, bound twofold more ligand molecules than wild type receptor, with an affinity similar to that of wild type receptor. These findings suggest that insertion at these positions allows the access of more than one ligand molecule to the binding site.
Resumo:
Posterior parietal cortex (PPC) constitutes a critical cortical node in the sensorimotor system in which goal-directed actions are computed. This information then must be transferred into commands suitable for hand movements to the primary motor cortex (M1). Complexity arises because reach-to-grasp actions not only require directing the hand towards the object (transport component), but also preshaping the hand according to the features of the object (grip component). Yet, the functional influence that specific PPC regions exert over ipsilateral M1 during the planning of different hand movements remains unclear in humans. Here we manipulated transport and grip components of goal-directed hand movements and exploited paired-pulse transcranial magnetic stimulation (ppTMS) to probe the functional interactions between M1 and two different PPC regions, namely superior parieto-occipital cortex (SPOC) and the anterior region of the intraparietal sulcus (aIPS), in the left hemisphere. We show that when the extension of the arm is required to contact a target object, SPOC selectively facilitates motor evoked potentials, suggesting that SPOC-M1 interactions are functionally specific to arm transport. In contrast, a different pathway, linking the aIPS and ipsilateral M1, shows enhanced functional connections during the sensorimotor planning of grip. These results support recent human neuroimaging findings arguing for specialized human parietal regions for the planning of arm transport and hand grip during goal-directed actions. Importantly, they provide new insight into the causal influences these different parietal regions exert over ipsilateral motor cortex for specific types of planned hand movements
Resumo:
Conjugated polymers have attracted considerable attention in the last few decades due to their potential for optoelectronic applications. A key step that needs optimisation is charge carrier separation following photoexcitation. To understand better the dynamics of the exciton prior to charge separation, we have performed simulations of the formation and dynamics of localised excitations in single conjugated polymer strands. We use a nonadiabatic molecular dynamics method which allows for the coupled evolution of the nuclear degrees of freedom and of multiconfigurational electronic wavefunctions. We show the relaxation of electron-hole pairs to form excitons and oppositely charged polaron pairs and discuss the modifications to the relaxation process predicted by the inclusion of the Coulomb interaction between the carriers. The issue of charge photogeneration in conjugated polymers in dilute solution is also addressed. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3600404]
Resumo:
The main populating and depopulating mechanisms of the excited energy levels of ions in plasmas with densities <1023-1024 m-3 are electron collisional excitation from the ion's ground state and radiative decay, respectively, with the majority of the electron population being in the ground state of the ionization stage. Electron collisional ionization is predominately expected to take place from one ground state to that of the next higher ionization stage. However, the question arises as to whether, in some cases, ionization can also affect the excited level populations. This would apply particularly to those cases involving transient events such as impurity influxes in a laboratory plasma. An analysis of the importance of ionization in populating the excited levels of ions in plasmas typical of those found in the edge of tokamaks is undertaken for the C IV and C V ionization stages. The emphasis is on those energy levels giving rise to transitions of most use for diagnostic purposes (n ≤ 5). Carbon is chosen since it is an important contaminant of JET plasmas; it was the dominant low Z impurity before the installation of the ITER-like wall and is still present in the plasma after its installation. Direct electron collisional ionization both from and to excited levels is considered. Distorted-wave flexible atomic code calculations are performed to generate the required ionization cross sections, due to a lack of atomic data in the literature. Employing these data, ionization from excited level populations is not found to be significant in comparison with radiative decay. However, for some energy levels, ionization terminating in the excited level has an effect in the steady-state of the order of the measurement errors (±10%). During transient events, ionization to excited levels will be of more importance and must be taken into account in the calculation of excited level populations. More accurate atomic data, including possible resonance contributions to the cross sections, would tend to increase further the importance of these effects.
Resumo:
We have investigated inner-shell excitation of the LiH + molecular ion by electron impact within several different collision models to delineate Rydberg autoionizing resonance structure associated with the LiH + (1σ2σ 2 2 Σ + ) core-excited threshold. The minimal representation requires only the retention of the 1σ and 2σ molecular orbitals, in which the core-excited state involves the promotion of a single electron into the 2σ orbital. This model is extended to include two further representations, in which both the 3σ and 4σ orbitals obtained from a self-consistent field calculation improve target representation, correlation and support additional autoionization channels. This affects the autoionization widths and to a lesser degree the positions of the LiH (1σ2σ 2 n s, n p 1,3 Σ + ) resonance series. Comparing our work with calculations on the counterpart atomic Be system assists in the assignment of the core-excited molecular resonance states. The results from our investigation provide helpful insights into the study of inner-shell transitions produced by electron or photon impact in more complex diatomic molecules.
Resumo:
Recent measurements using an X-ray Free Electron Laser (XFEL) and an Electron Beam Ion Trap at the Linac Coherent Light Source facility highlighted large discrepancies between the observed and theoretical values for the Fe XVII 3C/3D line intensity ratio. This result raised the question of whether the theoretical oscillator strengths may be significantly in error, due to insufficiencies in the atomic structure calculations. We present time-dependent spectral modeling of this experiment and show that non-equilibrium effects can dramatically reduce the predicted 3C/3D line intensity ratio, compared with that obtained by simply taking the ratio of oscillator strengths. Once these non-equilibrium effects are accounted for, the measured line intensity ratio can be used to determine a revised value for the 3C/3D oscillator strength ratio, giving a range from 3.0 to 3.5. We also provide a framework to narrow this range further, if more precise information about the pulse parameters can be determined. We discuss the implications of the new results for the use of Fe XVII spectral features as astrophysical diagnostics and investigate the importance of time-dependent effects in interpreting XFEL-excited plasmas.
Resumo:
Electron-impact ionization cross sections for the 1s2s 1S and 1s2s 3S metastable states of Li+ are calculated using both perturbative distorted-wave and non-perturbative close-coupling methods. Term-resolved distorted-wave calculations are found to be approximately 15% above term-resolved R-matrix with pseudostates calculations. On the other hand, configuration-average time-dependent close-coupling calculations are found to be in excellent agreement with the configuration-average R-matrix with pseudostates calculations. The non-perturbative R-matrix and close-coupling calculations provide a benchmark for experimental studies of electron-impact ionization of metastable states along the He isoelectronic sequence.