60 resultados para Watershed transform


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the design constraints that are required for a Rotman lens to realize discrete Fourier transform (DFT) amplitude and phase functionality are derived. A Fourier Rotman lens has been designed, fabricated and validated. The amplitude and phase response and the array pattern based on the CST™ results are validated with the theoretical DFT results. To the best of the authors' knowledge, this is the first Fourier Rotman lens to be fabricated and validated. The solution provided replaces multilayer Butler matrix solutions with a simple single layer microstrip technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White household paints are commonly encountered as evidence in the forensic laboratory but they often cannot be readily distinguished by color alone so Fourier transform infrared (FT-IR) microscopy is used since it can sometimes discriminate between paints prepared with different organic resins. Here we report the first comparative study of FT-IR and Raman spectroscopy for forensic analysis of white paint. Both techniques allowed the 51 white paint samples in the study to be classified by inspection as either belonging to distinct groups or as unique samples. FT-IR gave five groups and four unique samples; Raman gave seven groups and six unique samples. The basis for this discrimination was the type of resin and/ or inorganic pigments/extenders present. Although this allowed approximately half of the white paints to be distinguished by inspection, the other half were all based on a similar resin and did not contain the distinctive modifiers/pigments and extenders that allowed the other samples to be identified. The experimental uncertainty in the relative band intensities measured using FT-IR was similar to the variation within this large group, so no further discrimination was possible. However, the variation in the Raman spectra was larger than the uncertainty, which allowed the large group to be divided into three subgroups and four distinct spectra, based on relative band intensities. The combination of increased discrimination and higher sample throughput means that the Raman method is superior to FT-IR for samples of this type. © 2005 Society for Applied Spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the response of humid mid-latitude forests to changes in precipitation, temperature, nutrient cycling, and disturbance is critical to improving our predictive understanding of changes in the surface-subsurface energy balance due to climate change. Mechanistic understanding of the effects of long-term and transient moisture conditions are needed to quantify
linkages between changing redox conditions, microbial activity, and soil mineral and nutrient interactions on C cycling and greenhouse gas releases. To illuminate relationships between the soil chemistry, microbial communities and organic C we established transects across hydraulic and topographic gradients in a small watershed with transient moisture conditions. Valley bottoms tend to be more frequently saturated than ridge tops and side slopes which generally are only saturated when shallow storm flow zones are active. Fifty shallow (~36”) soil cores were collected during timeframes representative of low CO2, soil winter conditions and high CO2, soil summer conditions. Cores were subdivided into 240 samples based on pedology and analyses of the geochemical (moisture content, metals, pH, Fe species, N, C, CEC, AEC) and microbial (16S rRNA gene
amplification with Illumina MiSeq sequencing) characteristics were conducted and correlated to watershed terrain and hydrology. To associate microbial metabolic activity with greenhouse gas emissions we installed 17 soil gas probes, collected gas samples for 16 months and analyzed them for CO2 and other fixed and greenhouse gasses. Parallel to the experimental efforts our data is being used to support hydrobiogeochemical process modeling by coupling the Community Land Model (CLM) with a subsurface process model (PFLOTRAN) to simulate processes and interactions from the molecular to watershed scales. Including above ground processes (biogeophysics, hydrology, and vegetation dynamics), CLM provides mechanistic water, energy, and organic matter inputs to the surface/subsurface models, in which coupled biogeochemical reaction
networks are used to improve the representation of below-ground processes. Preliminary results suggest that inclusion of above ground processes from CLM greatly improves the prediction of moisture response and water cycle at the watershed scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a unified approach to an energy-efficient variation-tolerant design of Discrete Wavelet Transform (DWT) in the context of image processing applications. It is to be noted that it is not necessary to produce exactly correct numerical outputs in most image processing applications. We exploit this important feature and propose a design methodology for DWT which shows energy quality tradeoffs at each level of design hierarchy starting from the algorithm level down to the architecture and circuit levels by taking advantage of the limited perceptual ability of the Human Visual System. A unique feature of this design methodology is that it guarantees robustness under process variability and facilitates aggressive voltage over-scaling. Simulation results show significant energy savings (74% - 83%) with minor degradations in output image quality and avert catastrophic failures under process variations compared to a conventional design. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-electrolysis of carbon dioxide and steam has been shown to be an efficient way to produce syngas, however further optimisation requires detailed understanding of the complex reactions, transport processes and degradation mechanisms occurring in the solid oxide cell (SOC) during operation. Whilst electrochemical measurements are currently conducted in situ, many analytical techniques can only be used ex situ and may even be destructive to the cell (e.g. SEM imaging of microstructure). In order to fully understand and characterise co-electrolysis, in situ monitoring of the reactants, products and SOC is necessary. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) is ideal for in situ monitoring of co-electrolysis as both gaseous and adsorbed CO and CO2 species can be detected, however it has previously not been used for this purpose. The challenges of designing an experimental rig which allows optical access alongside electrochemical measurements at high temperature and operates in a dual atmosphere are discussed. The rig developed has thus far been used for symmetric cell testing at temperatures from 450[degree]C to 600[degree]C. Under a CO atmosphere, significant changes in spectra were observed even over a simple Au|10Sc1CeSZ|Au SOC. The changes relate to a combination of CO oxidation, the water gas shift reaction and carbonate formation and decomposition processes, with the dominant process being both potential and temperature dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new perceptual watermarking model for Discrete Shearlet transform (DST). DST provides the optimal representation [10] of the image features based on multi-resolution and multi-directional analysis. This property can be exploited on for watermark embedding to achieve the watermarking imperceptibility by introducing the human visual system using Chou’s model. In this model, a spatial JND profile is adapted to fit the sub-band structure. The combination of DST and the Just-Noticeable Distortion (JND) profile improves the levels of robustness against certain attacks while minimizing the distortion; by assigning a visibility threshold of distortion to each DST sub-band coefficient in the case of grey scale image watermarking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parametric regression model for right-censored data with a log-linear median regression function and a transformation in both response and regression parts, named parametric Transform-Both-Sides (TBS) model, is presented. The TBS model has a parameter that handles data asymmetry while allowing various different distributions for the error, as long as they are unimodal symmetric distributions centered at zero. The discussion is focused on the estimation procedure with five important error distributions (normal, double-exponential, Student's t, Cauchy and logistic) and presents properties, associated functions (that is, survival and hazard functions) and estimation methods based on maximum likelihood and on the Bayesian paradigm. These procedures are implemented in TBSSurvival, an open-source fully documented R package. The use of the package is illustrated and the performance of the model is analyzed using both simulated and real data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We break down photoelectron diffraction intensities into four terms in analogy to optical holography and discuss the effect of each term on reconstructed images. The second term involving products of scattered waves SIGMA-SIGMA-O(i)O(j)*, is in this case not structure-less. Theoretical analysis and simulations demonstrate that this term may lead to spurious features in real space images in holographic transforms of medium energy electron diffraction patterns. If it is small enough the problem may be overcome by an iterative correction process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a JPEG-2000 compliant architecture capable of computing the 2 -D Inverse Discrete Wavelet Transform. The proposed architecture uses a single processor and a row-based schedule to minimize control and routing complexity and to ensure that processor utilization is kept at 100%. The design incorporates the handling of borders through the use of symmetric extension. The architecture has been implemented on the Xilinx Virtex2 FPGA.