158 resultados para Pharmacy and pharmacology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The aim was to enhance aminolevulinic acid (ALA) stability by incorporation into low-melting microparticles prepared using a spray congealing procedure and to evaluate temperature-triggered release, allowing topical bioavailability following melting at skin temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The inclusion 01 chemical penetration enhancers in a novel patch-based system for the delivery of 5-aminolevulinic acid (ALA) was examined in vitro and in vivo. Poor penetration of ALA has been implicated as the primary factor for low response rates achieved with topical ALA-based photodynamic therapy of thicker neoplastic lesions. such as nodular basal cell carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives The Tat peptide has been widely used for the intracellular delivery of macromolecules. The aim of this study was to modify the peptide to enable regulation of cellular uptake through a dependency on activation by proteases present in the local environment.

Methods The native Tat peptide sequence was altered to inhibit the initial interaction of the peptide with the cell membrane through the addition of the consensus sequence for urokinase plasminogen activator (uPA). uPA expression was characterised and semi-quantitatively rated in three cell lines (U251mg, MDA-MB-231 and HeLa). The modified peptide was incubated with both recombinant enzyme and with cells varying in uPA activity. Cellular uptake of the modified Tat peptide line was compared with that of the native peptide and rated according to uPA activity measured in each cell line.

Key findings uPA activity was observed to be high in U251mg and MDA-MB-231 and low in HeLa. In MDA-MB-231 and HeLa, uptake of the modified peptide correlated with the level of uPA expression detected (93 and 52%, respectively). In U251mg, however, the uptake of the modified peptide was much less (19% observed reduction) than the native peptide despite a high level of uPA activity detected.

Conclusions Proteolytic activation represents an interesting strategy for the targeted delivery of macromolecules using peptide-based carriers and holds significant potential for further exploitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spray-dried formulations offer an attractive delivery system for administration of drug encapsulated into liposomes to the lung, but can suffer from low encapsulation efficiency and poor aerodynamic properties. In this paper the effect of the concentration of the anti-adherent l-leucine was investigated in tandem with the protectants sucrose and trehalose. Two manufacturing methods were compared in terms of their ability to offer small liposomal size, low polydispersity and high encapsulation of the drug indometacin. Unexpectedly sucrose offered the best protection to the liposomes during the spray drying process, although formulations containing trehalose formed products with the best powder characteristics for pulmonary delivery; high glass transition values, fine powder fraction and yield. It was also found that l-leucine contributed positively to the characteristics of the powders, but that it should be used with care as above the optimum concentration of 0.5% (w/w) the size and polydispersity index increased significantly for both disaccharide formulations. The method of liposome preparation had no effect on the stability or encapsulation efficiency of spray-dried powders containing optimal protectant and anti-adherent. Using l-leucine at concentrations higher than the optimum level caused instability in the reconstituted liposomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To develop an epirubicin-loaded, water-soluble mucoadhesive gels that have the correct rheological properties to facilitate their delivery into the bladder via a catheter, while allowing for their spread across the bladder wall with limited expansion of the bladder and increasing the retention of epirubicin in the bladder and flushing with urine.

Methods: Epirubicin-loaded hydroxyl ethyl cellulose (HEC) and hydroxy propyl methyl cellulose (HPMC) gels were manufactured and tested for their rheological properties. Their ability to be pushed through a catheter was also assessed as was their in-vitro drug release, spreading in a bladder and retention of epirubicin after flushing with simulated urine.

Key findings: Epirubicin drug release was viscosity-dependent. The 1 and 1.5% HEC gels and the 1, 1.5 and 2% HPMC gels had the correct viscosity to be administered through a model catheter and spread evenly across the bladder wall under the pressure of the detrusor muscle. The epirubicin-loaded gels had an increased retention time in the bladder when compared with a standard intravesical solution of epirubicin, even after successive flushes with simulated urine.

Conclusion: The increased retention of epirubicin in the bladder by the HEC and HPMC gels warrant further investigation, using an in-vivo model, to assess their potential for use as treatment for non-muscle-invasive bladder cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: We aimed to highlight the utility of novel dissolving microneedle (MN)-based delivery systems for enhanced transdermal protein delivery. Vaccination remains the most accepted and effective approach in offering protection from infectious diseases. In recent years, much interest has focused on the possibility of using minimally invasive MN technologies to replace conventional hypodermic vaccine injections.

METHODS: The focus of this study was exploitation of dissolving MN array devices fabricated from 20% w/w poly(methyl vinyl ether/maleic acid) using a micromoulding technique, for the facilitated delivery of a model antigen, ovalbumin (OVA).

KEY FINDINGS: A series of in-vitro and in-vivo experiments were designed to demonstrate that MN arrays loaded with OVA penetrated the stratum corneum and delivered their payload systemically. The latter was evidenced by the activation of both humoral and cellular inflammatory responses in mice, indicated by the production of immunoglobulins (IgG, IgG1, IgG2a) and inflammatory cytokines, specifically interferon-gamma and interleukin-4. Importantly, the structural integrity of the OVA following incorporation into the MN arrays was maintained.

CONCLUSION: While enhanced manufacturing strategies are required to improve delivery efficiency and reduce waste, dissolving MN are a promising candidate for 'reduced-risk' vaccination and protein delivery strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: This article uses conventional and newly extended solubility parameter (δ) methods to identify polymeric materials capable of forming amorphous dispersions with itraconazole (itz). Methods: Combinations of itz and Soluplus, Eudragit E PO (EPO), Kollidon 17PF (17PF) or Kollidon VA64 (VA64) were prepared as amorphous solid dispersions using quench cooling and hot melt extrusion. Storage stability was evaluated under a range of conditions using differential scanning calorimetry and powder X-ray diffraction. Key findings: The rank order of itz miscibility with polymers using both conventional and novel δ-based approaches was 17PF > VA64 > Soluplus > EPO, and the application of the Flory–Huggins lattice model to itz–excipient binary systems corroborated the findings. The solid-state characterisation analyses of the formulations manufactured by melt extrusion correlated well with pre-formulation screening. Long-term storage studies showed that the physical stability of 17PF/vitamin E TPGS–itz was poor compared with Soluplus and VA64 formulations, and for EPO/itz systems variation in stability may be observed depending on the preparation method. Conclusion: Results have demonstrated that although δ-based screening may be useful in predicting the initial state of amorphous solid dispersions, assessment of the physical behaviour of the formulations at relevant temperatures may be more appropriate for the successful development of commercially acceptable amorphous drug products.