58 resultados para Logic-based optimization algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique for optimizing the efficiency of the sub-map method for large-scale simultaneous localization and mapping (SLAM) is proposed. It optimizes the benefits of the sub-map technique to improve the accuracy and consistency of an extended Kalman filter (EKF)-based SLAM. Error models were developed and engaged to investigate some of the outstanding issues in employing the sub-map technique in SLAM. Such issues include the size (distance) of an optimal sub-map, the acceptable error effect caused by the process noise covariance on the predictions and estimations made within a sub-map, when to terminate an existing sub-map and start a new one and the magnitude of the process noise covariance that could produce such an effect. Numerical results obtained from the study and an error-correcting process were engaged to optimize the accuracy and convergence of the Invariant Information Local Sub-map Filter previously proposed. Applying this technique to the EKF-based SLAM algorithm (a) reduces the computational burden of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. A Monte Carlo analysis of the system is presented as a means of demonstrating the consistency and efficacy of the proposed technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: We have been developing an image-guided single vocal cord irradiation technique to treat patients with stage T1a glottic carcinoma. In the present study, we compared the dose coverage to the affected vocal cord and the dose delivered to the organs at risk using conventional, intensity-modulated radiotherapy (IMRT) coplanar, and IMRT non-coplanar techniques.

METHODS AND MATERIALS: For 10 patients, conventional treatment plans using two laterally opposed wedged 6-MV photon beams were calculated in XiO (Elekta-CMS treatment planning system). An in-house IMRT/beam angle optimization algorithm was used to obtain the coplanar and non-coplanar optimized beam angles. Using these angles, the IMRT plans were generated in Monaco (IMRT treatment planning system, Elekta-CMS) with the implemented Monte Carlo dose calculation algorithm. The organs at risk included the contralateral vocal cord, arytenoids, swallowing muscles, carotid arteries, and spinal cord. The prescription dose was 66 Gy in 33 fractions.

RESULTS: For the conventional plans and coplanar and non-coplanar IMRT plans, the population-averaged mean dose ± standard deviation to the planning target volume was 67 ± 1 Gy. The contralateral vocal cord dose was reduced from 66 ± 1 Gy in the conventional plans to 39 ± 8 Gy and 36 ± 6 Gy in the coplanar and non-coplanar IMRT plans, respectively. IMRT consistently reduced the doses to the other organs at risk.

CONCLUSIONS: Single vocal cord irradiation with IMRT resulted in good target coverage and provided significant sparing of the critical structures. This has the potential to improve the quality-of-life outcomes after RT and maintain the same local control rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AgentSpeak is a logic-based programming language, based on the Belief-Desire-Intention (BDI) paradigm, suitable for building complex agent-based systems. To limit the computational complexity, agents in AgentSpeak rely on a plan library to reduce the planning problem to the much simpler problem of plan selection. However, such a plan library is often inadequate when an agent is situated in an uncertain environment. In this paper, we propose the AgentSpeak+ framework, which extends AgentSpeak with a mechanism for probabilistic planning. The beliefs of an AgentSpeak+ agent are represented using epistemic states to allow an agent to reason about its uncertain observations and the uncertain effects of its actions. Each epistemic state consists of a POMDP, used to encode the agent’s knowledge of the environment, and its associated probability distribution (or belief state). In addition, the POMDP is used to select the optimal actions for achieving a given goal, even when facing uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The circumstances in Colombo, Sri Lanka, and in Belfast, Northern Ireland, which led to a) the generalization of luminescent PET (photoinduced electron transfer) sensing/switching as a design tool, b) the construction of a market-leading blood electrolyte analyzer and c) the invention of molecular logic-based computation as an experimental field, are delineated. Efforts to extend the philosophy of these approaches into issues of small object identification, nanometric mapping, animal visual perception and visual art are also outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops an integrated optimal power flow (OPF) tool for distribution networks in two spatial scales. In the local scale, the distribution network, the natural gas network, and the heat system are coordinated as a microgrid. In the urban scale, the impact of natural gas network is considered as constraints for the distribution network operation. The proposed approach incorporates unbalance three-phase electrical systems, natural gas systems, and combined cooling, heating, and power systems. The interactions among the above three energy systems are described by energy hub model combined with components capacity constraints. In order to efficiently accommodate the nonlinear constraint optimization problem, particle swarm optimization algorithm is employed to set the control variables in the OPF problem. Numerical studies indicate that by using the OPF method, the distribution network can be economically operated. Also, the tie-line power can be effectively managed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A new search-space-updating technique for genetic algorithms is proposed for continuous optimisation problems. Other than gradually reducing the search space during the evolution process with a fixed reduction rate set ‘a priori’, the upper and the lower boundaries for each variable in the objective function are dynamically adjusted based on its distribution statistics. To test the effectiveness, the technique is applied to a number of benchmark optimisation problems in comparison with three other techniques, namely the genetic algorithms with parameter space size adjustment (GAPSSA) technique [A.B. Djurišic, Elite genetic algorithms with adaptive mutations for solving continuous optimization problems – application to modeling of the optical constants of solids, Optics Communications 151 (1998) 147–159], successive zooming genetic algorithm (SZGA) [Y. Kwon, S. Kwon, S. Jin, J. Kim, Convergence enhanced genetic algorithm with successive zooming method for solving continuous optimization problems, Computers and Structures 81 (2003) 1715–1725] and a simple GA. The tests show that for well-posed problems, existing search space updating techniques perform well in terms of convergence speed and solution precision however, for some ill-posed problems these techniques are statistically inferior to a simple GA. All the tests show that the proposed new search space update technique is statistically superior to its counterparts.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, by investigating the influence of source/drain extension region engineering (also known as gate-source/drain underlap) in nanoscale planar double gate (DG) SOI MOSFETs, we offer new insights into the design of future nanoscale gate-underlap DG devices to achieve ITRS projections for high performance (HP), low standby power (LSTP) and low operating power (LOP) logic technologies. The impact of high-kappa gate dielectric, silicon film thickness, together with parameters associated with the lateral source/drain doping profile, is investigated in detail. The results show that spacer width along with lateral straggle can not only effectively control short-channel effects, thus presenting low off-current in a gate underlap device, but can also be optimized to achieve lower intrinsic delay and higher on-off current ratio (I-on/I-off). Based on the investigation of on-current (I-on), off-current (I-off), I-on/I-off, intrinsic delay (tau), energy delay product and static power dissipation, we present design guidelines to select key device parameters to achieve ITRS projections. Using nominal gate lengths for different technologies, as recommended from ITRS specification, optimally designed gate-underlap DG MOSFETs with a spacer-to-straggle (s/sigma) ratio of 2.3 for HP/LOP and 3.2 for LSTP logic technologies will meet ITRS projection. However, a relatively narrow range of lateral straggle lying between 7 to 8 nm is recommended. A sensitivity analysis of intrinsic delay, on-current and off-current to important parameters allows a comparative analysis of the various design options and shows that gate workfunction appears to be the most crucial parameter in the design of DG devices for all three technologies. The impact of back gate misalignment on I-on, I-off and tau is also investigated for optimized underlap devices.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The conventional radial basis function (RBF) network optimization methods, such as orthogonal least squares or the two-stage selection, can produce a sparse network with satisfactory generalization capability. However, the RBF width, as a nonlinear parameter in the network, is not easy to determine. In the aforementioned methods, the width is always pre-determined, either by trial-and-error, or generated randomly. Furthermore, all hidden nodes share the same RBF width. This will inevitably reduce the network performance, and more RBF centres may then be needed to meet a desired modelling specification. In this paper we investigate a new two-stage construction algorithm for RBF networks. It utilizes the particle swarm optimization method to search for the optimal RBF centres and their associated widths. Although the new method needs more computation than conventional approaches, it can greatly reduce the model size and improve model generalization performance. The effectiveness of the proposed technique is confirmed by two numerical simulation examples.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we have developed a low-complexity algorithm for epileptic seizure detection with a high degree of accuracy. The algorithm has been designed to be feasibly implementable as battery-powered low-power implantable epileptic seizure detection system or epilepsy prosthesis. This is achieved by utilizing design optimization techniques at different levels of abstraction. Particularly, user-specific critical parameters are identified at the algorithmic level and are explicitly used along with multiplier-less implementations at the architecture level. The system has been tested on neural data obtained from in-vivo animal recordings and has been implemented in 90nm bulk-Si technology. The results show up to 90 % savings in power as compared to prevalent wavelet based seizure detection technique while achieving 97% average detection rate. Copyright 2010 ACM.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right" amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less-crucial" computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia subsystem shows large power benefits ( up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel noise.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Environmental problems, especially climate change, have become a serious global issue waiting for people to solve. In the construction industry, the concept of sustainable building is developing to reduce greenhouse gas emissions. In this study, a building information modeling (BIM) based building design optimization method is proposed to facilitate designers to optimize their designs and improve buildings’ sustainability. A revised particle swarm optimization (PSO) algorithm is applied to search for the trade-off between life cycle costs (LCC) and life cycle carbon emissions (LCCE) of building designs. In order tovalidate the effectiveness and efficiency of this method, a case study of an office building is conducted in Hong Kong. The result of the case study shows that this method can enlarge the searching space for optimal design solutions and shorten the processing time for optimal design results, which is really helpful for designers to deliver an economic and environmental friendly design scheme.