132 resultados para Kinase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Diabetes mellitus (DM) causes multiple dysfunctions including circulatory disorders such as cardiomyopathy, angiopathy, atherosclerosis and arterial hypertension. Rho kinase (ROCK) and protein kinase C (PKC) regulate vascular smooth muscle (VSM) Ca(2+) sensitivity, thus enhancing VSM contraction, and up-regulation of both enzymes in DM is well known. We postulated that in DM, Ca(2+) sensitization occurs in diabetic arteries due to increased ROCK and/or PKC activity. EXPERIMENTAL APPROACH: Rats were rendered hyperglycaemic by i.p. injection of streptozotocin. Age-matched control tissues were used for comparison. Contractile responses to phenylephrine (Phe) and different Ca(2+) concentrations were recorded, respectively, from intact and chemically permeabilized vascular rings from aorta, tail and mesenteric arteries. KEY RESULTS: Diabetic tail and mesenteric arteries demonstrated markedly enhanced sensitivity to Phe while these changes were not observed in aorta. The ROCK inhibitor HA1077, but not the PKC inhibitor chelerythrine, caused significant reduction in sensitivity to agonist in diabetic vessels. Similar changes were observed for myofilament Ca(2+) sensitivity, which was again enhanced in DM in tail and mesenteric arteries, but not in aorta, and could be reduced by both the ROCK and PKC blockers. CONCLUSIONS AND IMPLICATIONS: We conclude that in DM enhanced myofilament Ca(2+) sensitivity is mainly manifested in muscular-type blood vessels and thus likely to contribute to the development of hypertension. Both PKC and, in particular, ROCK are involved in this phenomenon. This highlights their potential usefulness as drug targets in the pharmacological management of DM-associated vascular dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-Acetylgalactosamine kinase (GALK2) is a small molecule kinase from the GHMP family which phosphorylates N-acetylgalactosamine at the expense of ATP. Recombinant GALK2 expressed in, and purified from, Escherichia coli was shown to be active with the following kinetic parameters: Michaelis constant for ATP, 14 +/- 3 mu M; Michaelis constant for N-acetylgalactosamine, 40 +/- 14 mu M; and turnover number, 1.0 +/- 0.1 s

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction of a nitrogen atom into the 6-position of a series of pyrazolo[3,4-b]pyridines led to a dramatic improvement in the potency of GSK-3 inhibition. Rationalisation of the binding mode suggested participation of a putative structural water molecule, which was subsequently confirmed by X-ray crystallography. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potent 3-anilino-4-arylmaleimide glycogen synthase kinase-3 (GSK-3) inhibitors have been prepared using automated array methodology. A number of these are highly selective, having little inhibitory potency against more than 20 other protein kinases. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glycogen synthase kinase-3 (GSK-8) is a serine/threonine protein kinase, the activity of which is inhibited by a variety of extracellular stimuli including insulin, growth factors, cell specification factors and cell adhesion. Consequently, inhibition of GSK-3 activity has been proposed to play a role in the regulation of numerous signalling pathways that elicit pleiotropic cellular responses. This report describes the identification and characterisation of potent and selective small molecule inhibitors of GSK-3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:



Purpose. The authors conducted an in vitro investigation of the role of Ca2+-dependent signaling in vascular endothelial growth factor (VEGF)-induced angiogenesis in the retina.

Methods. Bovine retinal endothelial cells (BRECs) were stimulated with VEGF in the presence or absence of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM; intracellular Ca2+ chelator), U73122 (phospholipase C (PLC) inhibitor), xestospongin C (Xe-C), and 2-aminoethoxydiphenyl borate (2APB) (inhibitors of inositol-1,4,5 triphosphate (IP3) signaling). Intracellular Ca2+ concentration ([Ca2+]i) was estimated using fura-2 Ca2+ microfluorometry, Akt phosphorylation quantified by Western blot analysis, and angiogenic responses assessed using cell migration, proliferation, tubulogenesis, and sprout formation assays. The effects of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 were also evaluated on VEGF-induced Akt signaling and angiogenic activity.

Results. Stimulation of BRECs with 25 ng/mL VEGF induced a biphasic increase in [Ca2+]i, with an initial transient peak followed by a sustained plateau phase. VEGF-induced [Ca2+]i increases were almost completely abolished by pretreating the cells with BAPTA-AM, U73122, Xe-C, or 2APB. These agents also inhibited VEGF-induced phosphorylation of Akt, cell migration, proliferation, tubulogenesis, and sprouting angiogenesis. KN93 was similarly effective at blocking the VEGF-induced activation of Akt and angiogenic responses.

Conclusions. VEGF increases [Ca2+]i in BRECs through activation of the PLC-IP3 signal transduction pathway. VEGF-induced phosphorylation of the proangiogenic protein Akt is critically dependent on this increase in [Ca2+]i and the subsequent activation of CaMKII. Pharmacologic inhibition of Ca2+-mediated signaling in retinal endothelial cells blocks VEGF-induced angiogenic responses. These results suggest that the PLC/IP3/Ca2+/CaMKII signaling pathway may be a rational target for the treatment of angiogenesis-related disorders of the eye.