65 resultados para Higher order terms
Resumo:
Underpinning current models of the mechanisms of the action of radiation is a central role for DNA damage and in particular double-strand breaks (DSBs). For radiations of different LET, there is a need to know the exact yields and distributions of DSBs in human cells. Most measurements of DSB yields within cells now rely on pulsed-field gel electrophoresis as the technique of choice. Previous measurements of DSB yields have suggested that the yields are remarkably similar for different types of radiation with RBE values less than or equal to1.0. More recent studies in mammalian cells, however, have suggested that both the yield and the spatial distribution of DSBs are influenced by radiation quality. RBE values for DSBs induced by high-LET radiations are greater than 1.0, and the distributions are nonrandom. Underlying this is the interaction of particle tracks with the higher-order chromosomal structures within cell nuclei. Further studies are needed to relate nonrandom distributions of DSBs to their rejoining kinetics. At the molecular level, we need to determine the involvement of clustering of damaged bases with strand breakage, and the relationship between higher-order clustering over sizes of kilobase pairs and above to localized clustering at the DNA level. Overall, these studies will allow us to elucidate whether the nonrandom distributions of breaks produced by high-LET particle tracks have any consequences for their repair and biological effectiveness. (C) 2001 by Radiation Research Society.
Resumo:
Studies of trait-mediated indirect interactions (TMIIs) typically focus on effects higher predators have on per capita consumption by intermediate consumers of a third, basal prey resource. TMIIs are usually evidenced by changes in feeding rates of intermediate consumers and/or differences in densities of this third species. However, understanding and predicting effects of TMIIs on population stability of such basal species requires examination of the type and magnitude of the functional responses exhibited towards them. Here, in a marine intertidal system consisting of a higher-order fish predator, the shanny Lipophrys pholis, an intermediate predator, the amphipod Echinogammarus marinus, and a basal prey resource, the isopod Jaera nordmanni, we detected TMIIs, demonstrating the importance of habitat complexity in such interactions, by deriving functional responses and exploring consequences for prey population stability. Echinogammarus marinus reacted to fish predator diet cues by reducing activity, a typical anti-predator response, but did not alter habitat use. Basal prey, Jaera nordmanni, did not respond to fish diet cues with respect to activity, distribution or aggregation behaviour. Echinogammarus marinus exhibited type II functional responses towards J. nordmanni in simple habitat, but type III functional responses in complex habitat. However, while predator cue decreased the magnitude of the type II functional response in simple habitat, it increased the magnitude of the type III functional response in complex habitat. These findings indicate that, in simple habitats, TMIIs may drive down consumption rates within type II responses, however, this interaction may remain de-stabilising for prey populations. Conversely, in complex habitats, TMIIs may strengthen regulatory influences of intermediate consumers on prey populations, whilst potentially maintaining prey population stability. We thus highlight that TMIIs can have unexpected and complex ramifications throughout communities, but can be unravelled by considering effects on intermediate predator functional response types and magnitudes.
Resumo:
The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose. © 2011 Elsevier B.V.
Resumo:
Several novel systolic architectures for implementing densely pipelined bit parallel IIR filter sections are presented. The fundamental problem of latency in the feedback loop is overcome by employing redundant arithmetic in combination with bit-level feedback, allowing a basic first-order section to achieve a wordlength-independent latency of only two clock cycles. This is extended to produce a building block from which higher order sections can be constructed. The architecture is then refined by combining the use of both conventional and redundant arithmetic, resulting in two new structures offering substantial hardware savings over the original design. In contrast to alternative techniques, bit-level pipelinability is achieved with no net cost in hardware. © 1989 Kluwer Academic Publishers.
Resumo:
A novel bit-level systolic array architecture for implementing IIR (infinite-impulse response) filter sections is presented. A first-order section achieves a latency of only two clock cycles by using a radix-2 redundant number representation, performing the recursive computation most significant digit first, and feeding back each digit of the result as soon as it is available. The design is extended to produce a building block from which second- and higher-order sections can be connected.
Resumo:
The formulation of a 3D composite element and its use in a mixed-mode fracture mechanics example is presented. This element, like a conventional 3D finite element, has three degrees of freedom per node although, like a plate element, the strains are defined in the local directions of the mid-plane surface. The stress-strain property matrix of this element was modified to decouple the stresses in the local mid-plane and the strains normal to this plane thus preventing the element from being too stiff in bending. A main advantage of this formulation is the ability to model a laminate with a single 3D element. The motivation behind this work was to improve the computational efficiency associated with the calculation of strain energy release rates in laminated structures. A comparison of mixed-mode results using different elements of an in-house finite element package are presented. Good agreement was achieved between the results obtained using the new element and coventional higher-order elements
Resumo:
For the first time in this paper we present results showing the effect of speaker head pose angle on automatic lip-reading performance over a wide range of closely spaced angles. We analyse the effect head pose has upon the features themselves and show that by selecting coefficients with minimum variance w.r.t. pose angle, recognition performance can be improved when train-test pose angles differ. Experiments are conducted using the initial phase of a unique multi view Audio-Visual database designed specifically for research and development of pose-invariant lip-reading systems. We firstly show that it is the higher order horizontal spatial frequency components that become most detrimental as the pose deviates. Secondly we assess the performance of different feature selection masks across a range of pose angles including a new mask based on Minimum Cross-Pose Variance coefficients. We report a relative improvement of 50% in Word Error Rate when using our selection mask over a common energy based selection during profile view lip-reading.
Resumo:
We show that the diffusion approximation breaks down for particle acceleration at oblique shocks with velocities typical of young supernova remnants. Higher order anisotropies flatten the spectral index at quasi-parallel shocks and steepen the spectral index at quasi-perpendicular shocks. We compare the theory with observed spectral indices.
Resumo:
Optical beams with null central intensity have potential applications in the field of atom optics. The spatial and temporal evolution of a central shadow dark hollow Gaussian (DHG) relativistic laser pulse propagating in a plasma is studied in this article for first principles. A nonlinear Schrodinger-type equation is obtained for the beam spot profile and then solved numerically to investigate the pulse propagation characteristics. As series of numerical simulations are employed to trace the profile of the focused and compressed DHG laser pulse as it propagates through the plasma. The theoretical and simulation results predict that higher-order DHG pulses show smaller divergence as they propagate and, thus, lead to enhanced energy transport. © 2013 American Physical Society.
Resumo:
According to a higher order reasoning account, inferential reasoning processes underpin the widely observed cue competition effect of blocking in causal learning. The inference required for blocking has been described as modus tollens (if p then q, not q therefore not p). Young children are known to have difficulties with this type of inference, but research with adults suggests that this inference is easier if participants think counterfactually. In this study, 100 children (51 five-year-olds and 49 six- to seven-year-olds) were assigned to two types of pretraining groups. The counterfactual group observed demonstrations of cues paired with outcomes and answered questions about what the outcome would have been if the causal status of cues had been different, whereas the factual group answered factual questions about the same demonstrations. Children then completed a causal learning task. Counterfactual pretraining enhanced levels of blocking as well as modus tollens reasoning but only for the younger children. These findings provide new evidence for an important role for inferential reasoning in causal learning.
Resumo:
We show that a significant increase in the gain and front-to-back ratio is obtained when different high impedance surface (HIS) sections are placed below the active regions of an Archimedean spiral antenna. The principle of operation is demonstrated at 3, 6, and 9 GHz for an antenna design that employs a ground plane composed of two dissimilar HISs. The unit cells of the HISs are collocated and resonant at the same frequency as the 3- and 6-GHz active regions of the wideband spiral. It is shown that the former HIS must also be designed to resonate at 9 GHz to avoid the generation of a boresight null that occurs because the structure is physically large enough to support higher-order modes. The improvement that is obtained at each of the three frequencies investigated is shown by comparing the predicted and measured radiation patterns for the free space and HIS-backed antenna.
Resumo:
Summary
-Predatory functional responses play integral roles in predator–prey dynamics, and their assessment promises greater understanding and prediction of the predatory impacts of invasive species.
-Other interspecific interactions, however, such as parasitism and higher-order predation, have the potential to modify predator–prey interactions and thus the predictive capability of the comparative functional response approach.
-We used a four-species community module (higher-order predator; focal native or invasive predators; parasites of focal predators; native prey) to compare the predatory functional responses of native Gammarus duebeni celticus and invasive Gammarus pulex amphipods towards three invertebrate prey species (Asellus aquaticus, Simulium spp., Baetis rhodani), thus, quantifying the context dependencies of parasitism and a higher-order fish predator on these functional responses.
-Our functional response experiments demonstrated that the invasive amphipod had a higher predatory impact (lower handling time) on two of three prey species, which reflects patterns of impact observed in the field. The community module also revealed that parasitism had context-dependent influences, for one prey species, with the potential to further reduce the predatory impact of the invasive amphipod or increase the predatory impact of the native amphipod in the presence of a higher-order fish predator.
-Partial consumption of prey was similar for both predators and occurred increasingly in the order A. aquaticus, Simulium spp. and B. rhodani. This was associated with increasing prey densities, but showed no context dependencies with parasitism or higher-order fish predator.
-This study supports the applicability of comparative functional responses as a tool to predict and assess invasive species impacts incorporating multiple context dependencies.
Resumo:
Ambisonics and Higher Order Ambisonics (HOA) are scalable spatial audio techniques that attempt to present a sound scene to listeners over as large an area as possible. A localisation experiment was carried out to investigate the performance of a first and third order system at three listening positions - one in the centre and two off-centre - using a 5 m radius loudspeaker array. The results are briefly presented and compared to those of an earlier experiment on a 2.2 m loudspeaker array. In both experiments the off-centre listeners were placed such that the ratio of distance from the centre to the array radius was constant in both experiments. The test used a reverse target-pointer adjustment method to determine the error, both signed and absolute, for each combination of listening position and system. The results for both arrays were found to be very similar, suggesting that the relative amplitude of the loudspeakers, which were the same in both cases, was more dominant for localisation than the arrival time differences, which differed between array sizes.
Resumo:
This paper explores the performance of sliding-window based training, termed as semi batch, using multilayer perceptron (MLP) neural network in the presence of correlated data. The sliding window training is a form of higher order instantaneous learning strategy without the need of covariance matrix, usually employed for modeling and tracking purposes. Sliding-window framework is implemented to combine the robustness of offline learning algorithms with the ability to track online the underlying process of a function. This paper adopted sliding window training with recent advances in conjugate gradient direction with application of data store management e.g. simple distance measure, angle evaluation and the novel prediction error test. The simulation results show the best convergence performance is gained by using store management techniques. © 2012 Springer-Verlag.