79 resultados para Fault compensation
Resumo:
This paper presents an innovative sensor system, created specifically for new civil engineering structural monitoring applications, allowing specially packaged fiber grating-based sensors to be used in harsh, in-the-field measurement conditions for accurate strain measurement with full temperature compensation. The sensor consists of two fiber Bragg gratings that are protected within a polypropylene package, with one of the fiber gratings isolated from the influence of strain and thus responding only to temperature variations, while the other is sensitive to both strain and temperature. To achieve this, the temperature-monitoring fiber grating is slightly bent and enclosed in a metal envelope to isolate it effectively from the strain. Through an appropriate calibration process, both the strain and temperature coefficients of each individual grating component when incorporated in the sensor system can be thus obtained. By using these calibrated coefficients in the operation of the sensor, both strain and temperature can be accurately determined. The specific application for which these sensors have been designed is seen when installed on an innovative small-scale flexi-arch bridge where they are used for real-time strain measurements during the critical installation stage (lifting) and loading. These sensors have demonstrated enhanced resilience when embedded in or surface-mounted on such concrete structures, providing accurate and consistent strain measurements not only during installation but subsequently during use. This offers an inexpensive and highly effective monitoring system tailored for the new, rapid method of the installation of small-scale bridges for a variety of civil engineering applications.
Resumo:
The aim of this paper is to increase the performance of hysteresis compensation for Shape Memory Alloy (SMA) actuators by using inverse Preisach model in closed — loop control system. This is used to reduce hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in closed-loop PID control system in order to obtain desired current-to-displacement relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.
Resumo:
This paper presents a novel detection method for broken rotor bar fault (BRB) in induction motors based on Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Simulated Annealing Algorithm (SAA). The performance of ESPRIT is tested with simulated stator current signal of an induction motor with BRB. It shows that even with a short-time measurement data, the technique is capable of correctly identifying the frequencies of the BRB characteristic components but with a low accuracy on the amplitudes and initial phases of those components. SAA is then used to determine their amplitudes and initial phases and shows satisfactory results. Finally, experiments on a 3kW, 380V, 50Hz induction motor are conducted to demonstrate the effectiveness of the ESPRIT-SAA-based method in detecting BRB with short-time measurement data. It proves that the proposed method is a promising choice for BRB detection in induction motors operating with small slip and fluctuant load.
Resumo:
In this paper, the authors have presented one approach to configuring a Wafer-Scale Integration Chip. The approach described is called the 'WINNER', in which bus channels and an external controller for configuring the working processors are not required. In addition, the technique is applicable to high availability systems constructed using conventional methods. The technique can also be extended to arrays of arbitrary size and with any degree of fault tolerance simply by using an appropriate number of cells.
Resumo:
Methods by which bit level systolic array chips can be made fault tolerant are discussed briefly. Using a simple analysis based on both Poisson and Bose-Einstein statistics authors demonstrate that such techniques can be used to obtain significant yield enhancement. Alternatively, the dimensions of an array can be increased considerably for the same initial (nonfault tolerant) chip yield.
Resumo:
Details of a new low power fast Fourier transform (FFT) processor for use in digital television applications are presented. This has been fabricated using a 0.6-µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-time video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8 × 8 mm and dissipates 1 W. The chip design is based on a novel VLSI architecture which has been derived from a first principles factorization of the discrete Fourier transform (DFT) matrix and tailored to a direct silicon implementation.
Resumo:
Details of a new low power FFT processor for use in digital television applications are presented. This has been fabricated using a 0.6 µm CMOS technology and can perform a 64 point complex forward or inverse FFT on real-rime video at up to 18 Megasamples per second. It comprises 0.5 million transistors in a die area of 7.8×8 mm and dissipates 1 W. Its performance, in terms of computational rate per area per watt, is significantly higher than previously reported devices, leading to a cost-effective silicon solution for high quality video processing applications. This is the result of using a novel VLSI architecture which has been derived from a first principles factorisation of the DFT matrix and tailored to a direct silicon implementation.
Resumo:
This paper analyses the relationships between the autonomy and regulation of state agencies in Norway, Ireland and Flanders (Belgium). The empirical basis is provided by broad surveys of public sector organizations carried out in 2002-2004. Three hypotheses on these relationships are formulated and examined, indicating different patterns. The reinforcement hypothesis, stating a negative relationship does not get any support. On the other hand, the compensation hypothesis, stating a positive relationship gets some support. In general, however, the indifference hypothesis, stating low or no correlations seems to be the most adequate. The hypotheses are also linked to prevalent administrative doctrines, and the empirical findings indicate how relevant they are. © Springer Science+Business Media, LLC 2008.
The Impact of Financial Compensation on Treatment Outcomes for Chronic Pain: A Test of Money Matters
Resumo:
The adoption of each new level of automotive emissions legislation often requires the introduction of additional emissions reduction techniques or the development of existing emissions control systems. This, in turn, usually requires the implementation of new sensors and hardware which must subsequently be monitored by the on-board fault detection systems. The reliable detection and diagnosis of faults in these systems or sensors, which result in the tailpipe emissions rising above the progressively lower failure thresholds, provides enormous challenges for OBD engineers. This paper gives a review of the field of fault detection and diagnostics as used in the automotive industry. Previous work is discussed and particular emphasis is placed on the various strategies and techniques employed. Methodologies such as state estimation, parity equations and parameter estimation are explained with their application within a physical model diagnostic structure. The utilization of symptoms and residuals in the diagnostic process is also discussed. These traditional physical model based diagnostics are investigated in terms of their limitations. The requirements from the OBD legislation are also addressed. Additionally, novel diagnostic techniques, such as principal component analysis (PCA) are also presented as a potential method of achieving the monitoring requirements of current and future OBD legislation.