125 resultados para Dendritic Morphology
Resumo:
Solid-state NMR and TEM were used to quantitatively examine the evolution of clay morphology upon equibiaxial stretching of polypropylene/montmorillonite (PP-MMT) nanocomposites up to a stretch ratio (?= final length/initial length) of 3.5. 1 H spin-lattice relaxation times were measured by the saturation-recovery sequence. For the nanocomposites, initial portions of the magnetization recovery
curves (e~20 ms) were found to depend on v t, indicative of diffusion-limited relaxation and in agreement with calculations based on estimates of the spin-diffusion barrier radius surrounding the paramagnetic centers in the clay, the electron-nucleus coupling constant, and the spin-diffusion coefficient. Initial slopes of these magnetization recovery curves directly correlated with the fraction of clay/polymer interface. New clay surface was exposed as a near linear function of strain. Long-time portions of the magnetization recovery curves yielded information on the average interparticle separations, which decreased slowly before reaching a plateau at ?=~2.5 as particles aligned. TEM images supported these findings and were used to define and quantify degrees of exfoliation and homogeneity from the NMR data. Exfoliation, defined as (platelets/ stack)-1, increased from 0.38 (unstretched) to 0.80 at ? = 3.5 for PP-MMT nanocomposites stretched at
150 C and 16 s-1. A lower stretch temperature, 145 C, which is slightly below melting onset, led to an exfoliation degree of 0.87 at ?= 2.8, consistent with the ability of higher melt viscosities to allow for higher shear stress transfer. Exposure of new clay surface is attributed to aggregate breakup and orientation at low strains (? e ~2) and to platelets sliding apart at higher strains.
Resumo:
Biological activities greatly influence the formation of many soils, especially forest soils under cool humid climates. The objective of this study was to investigate the effects of vegetation and soil biota on the formation of selected soils. Field morphology, micromorphology, and carbon and organic matter analysis were determined on six Podzols (Spodosols) and two Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Humification of plant material by soil fauna and fungi occurs in all organic horizons. Thick organic coatings are observed on soil peds and rock fragments from the E1 to the Bs horizon in a Haplic Podzol from Clingmans Dome Mt., TN. Thin sections reveal large accumulations of root material in different stages of decomposition in the spodic horizons of a Haplic Podzol from Whiteface Mt., NY. Organic carbon ranges from 5.4 to 8.5% in the spodic B horizons of the Whiteface Mt. Podzol. Earthworms and enchytraeids have a great effect on the structure of the surface and subsurface horizons in the Dystric Cambisols from Huntly and Clashindarroch Forests, Scotland and a Cambic Podzol from the Corrie Burn Basin, Scotland. Podzols from Speymouth Forest, Scotland (Gleyic Podzol), Cling-mans Dome Mt., and Whiteface Mt. have thick organic horizons. The Podzols from the Flatwoods in Georgia, the Pine Barrens in New Jersey, the Corrie Burn Basin, and the Cambisol from Huntly Forest have only A horizons at the surface. The Clashindarroch Forest soil has a very thin organic horizon. Warm and humid climates and sandy parent material are responsible for thick E horizons and lack of thick organic horizons in the Flatwoods (Carbic Podzol) and Pine Barrens (Ferric Podzol) soils. Earthworms and enchytraeids thrive in the Corrie Burn Basin and Huntly Forest soils due to the vegetation and the highly weathered basic parent material. The site at Clashindarroch once carried oak, and then birch forest, both of which produce a mild litter and also encourage earthworm and enchytraeids. This fauna is responsible for much mixing of the topsoil. The present conifer vegetation will eventually produce a deep litter and cause podzolization.
Resumo:
The chemokine eotaxin/CCL11 is an important mediator of leukocyte migration, but its effect on inflammatory cytokine signaling has not been explored. In this study, we find that CCL11 induces suppressor of cytokine signaling (SOCS) 1 and SOCS3 expression in murine macrophages, human monocytes, and dendritic cells (DCs). We also discover that CCL11 inhibits GM-CSF-mediated STAT5 activation and IL-4-induced STAT6 activation in a range of hematopoietic cells. This blockade of cytokine signaling by CCL11 results in reduced differentiation and endocytic ability of DCs, implicating CCL11-induced SOCS as mediators of chemotactic inflammatory control. These findings demonstrate cross-talk between chemokine and cytokine responses, suggesting that myeloid cells tracking to the inflammatory site do not differentiate in the presence of this chemokine, revealing another role for SOCS in inflammatory regulation. J. Leukoc. Biol. 85: 289-297; 2009.
Resumo:
The biological role of Langerin(+) dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin(+) DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of The biological role of Langerin+ dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin+ DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of Langerin+ DCs in vivo. For the first time, infection experiments with DT-treated Lang-DTR mice revealed that proliferation of L. major-specific CD8+ T cells is significantly reduced during the early phase of the immune response following depletion of Langerin+ DCs. Consequently, the total number of activated CD8+ T cells within the draining lymph node and at the site of infection is diminished. Furthermore, we show that the impaired CD8+ T cell response is due to the absence of Langerin+ dDCs and not Langerhans cells. Nevertheless, the CD4+ T cell response is not altered and the infection is cleared as effectively in DT-treated Lang-DTR mice as in control mice. This clearly demonstrates that Langerin+ DCs are, in general, dispensable for an efficient adaptive immune response against L. major parasites. Thus, we propose a novel concept that, in the experimental model of leishmaniasis, priming of CD4+ T cells is mediated by Langerin− dDCs, whereas Langerin+ dDCs are involved in early priming of CD8+ T cells.