57 resultados para Crops yield
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
Benzene cis-diol dehydrogenase and naphthalene cis-diol dehydrogenase enzymes, expressed in Pseudomonas putida wild-type and Escherichia coli recombinant strains, were used to investigate regioselectivity and stereoselectivity during dehydrogenations of arene, cyclic alkane and cyclic alkene vicinal cis-diols. The dehydrogenase-catalysed production of enantiopure cis-diols, α-ketols and catechols, using benzene cis-diol dehydrogenase and naphthalene cis-diol dehydrogenase, involved both kinetic resolution and asymmetric synthesis methods. The chemoenzymatic production and applications of catechol bioproducts in synthesis were investigated.
Resumo:
The regulation of genetically engineered crops is important for society: ensuring their safety for humans and the environment. Their authorization starts with a scientific step and ends with a political step. Trends in the time taken for their authorization in the European Union are that they are decreasing, but in the United States there is a break in the overall trend: initially it decreased until 1998 after which it increased.
Resumo:
Quantum yields of the photocatalytic degradation of methyl orange under controlled periodic illumination (CPI) have been modelled using existing models. A modified Langmuir-Hinshelwood (L-H) rate equation was used to predict the degradation reaction rates of methyl orange at various duty cycles and a simple photocatalytic model was applied in modelling quantum yield enhancement of the photocatalytic process due to the CPI effect. A good agreement between the modelled and experimental data was observed for quantum yield modelling. The modified L-H model, however, did not accurately predict the photocatalytic decomposition of the dye under periodic illumination.
Resumo:
Benzylic monooxygenation of benzocycloalkenes, 2-4, by enzymes in intact cultures of Pseudomonas putida UV4 yielded exclusively the [R] enantiomers, 6-8, and the derived ketones 10-12; by contrast, biotransformation of benzocyclobutene, 1, yielded both monooxygenation (5 and 9), dioxygenation (13, 14 and 15), and trioxygenation (16) products.
Resumo:
A study was undertaken to determine the effects of different concentrations of arsenic (As) in irrigation water on Boro (dry-season) rice (Oryza sativa) and their residual effects on the following Aman (wet-season) rice. There were six treatments, with 0, 0.1, 0.25, 0.5, 1, and 2 mg As L-1 applied as disodium hydrogen arsenate. All the growth and yield parameters of Boro rice responded positively at lower concentrations of up to 0.25 mg As L-1 in irrigation water but decreased sharply at concentrations more than 0.5 mg As L-1. Arsenic concentrations in grain and straw of Boro rice increased significantly with increasing concentration of As in irrigation water. The grain As concentration was in the range of 0.25 to 0.97 μg g-1 and its concentration in rice straw varied from 2.4 to 9.6 μg g-1 over the treatments. Residual As from previous Boro rice showed a very similar pattern in the following Aman rice, although As concentration in Aman rice grain and straw over the treatments was almost half of the As levels in Boro rice grain. Arsenic concentrations in both grain and straw of Boro and Aman rice were found to correlate with iron and be antagonistic with phosphorus. Copyright © Taylor & Francis Group, LLC.
Resumo:
Long-term use of arsenic contaminated groundwater to irrigate crops, especially paddy rice (Oryza sativa L.) has resulted in elevated soil arsenic levels in Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown on these soils. A greenhouse pot experiment was conducted to evaluate the impact of arsenic-contaminated irrigation water on the growth and uptake of arsenic into rice grain, husk, straw and root. There were altogether 10 treatments which were a combination of five arsenate irrigation water concentrations (0-8 mg As l-1) and two soil phosphate amendments. Use of arsenate containing irrigation water reduced plant height, decreased rice yield and affected development of root growth. Arsenic concentrations in all plant parts increased with increasing arsenate concentration in irrigation water. However, arsenic concentration in rice grain did not exceed the maximum permissible limit of 1.0 mg As kg-1. Arsenic accumulation in rice straw at very high levels indicates that feeding cattle with such contaminated straw could be a direct threat for their health and also, indirectly, to human health via presumably contaminated bovine meat and milk. Phosphate application neither showed any significant difference in plant growth and development, nor in As concentrations in plant parts.
Resumo:
Enantioenriched and enantiopure thiosulfinates were obtained by asymmetric sulfoxidation of cyclic 1,2-disulfides, using chemical and enzymatic (peroxidase, monooxygenase, dioxygenase) oxidation methods and chiral stationary phase HPLC resolution of racemic thiosulfinates. Enantiomeric excess values, absolute configurations and configurational stabilities of chiral thiosulfinates were determined. Methyl phenyl sulfoxide, benzo[c]thiophene cis-4,5-dihydrodiol and 1,3-dihydrobenzo[c]thiophene derivatives were among unexpected types of metabolites isolated, when acyclic and cyclic 1,2-disulfide were used as substrates for Pseudomonas putida strains. Possible biosynthetic pathways are presented for the production of metabolites from 1,4-dihydrobenzo-2,3-dithiane, including a novel cis-dihydrodiol metabolite that was also derived from benzo[c]thiophene and 1,3-dihydrobenzo[c]thiophene.
Resumo:
Genetically engineered (GE) crops are subject to regulatory oversight to ensure their safety for humans and the environment. Their approval in the European Union (EU) starts with an application in a given Member State followed by a scientific step (risk assessment), and ends with a political decision-making step (risk management); and in the United States (US) it starts with a scientific (field trial) step and ends with a ‘bureaucratic’ decision-making step. We investigated trends for the time taken for these steps and the overall time taken for approving GE crops in the US and the EU (traders in these commodities). Results show that from 1996-2015 the overall time trend for approval in the EU decreased and then flattened off, with an overall mean completion-time of 1,763 days. In the US in 1998 there was a break in the trend of the overall approval time: Initially, from 1988 until 1997 the trend decreased with a mean approval time of 1,321 days; from 1998-2015, the trend almost stagnated with a mean approval time of 2,467 days.