399 resultados para Astronomy, Assyro-Babylonian
Resumo:
We present calculations of intense-field multiphoton ionization processes in helium at XUV wavelengths. The calculations are obtained from a full-dimensional integration of the two-electron time-dependent Schrödinger equation. A momentum-space analysis of the ionizing two-electron wavepacket reveals the existence of double-electron above threshold ionization (DATI). In momentum-space two distinct forms of DATI are resolved, namely non-sequential and sequential. In non-sequential DATI correlated electrons resonantly absorb and share energy in integer units of Ïlaser.
Resumo:
merged beam technique has been used to investigate the fragmentation of the Cl ion in collisions with electrons over an energy range of 0–200 eV. We have measured absolute cross sections for detachment, detachment plus dissociation and dissociation processes. Over the energy range studied, the dominant breakup mechanism is dissociation. Dissociation is relatively enhanced in the e–+Cl collision system due to the suppression of the normally dominant detachment process, as a result of the large difference between the equilibrium internuclear distances of the Cl2 and Cl ground state potential curves. A prominent structure is observed just above the threshold in the Cl–+Cl+e– dissociation channel. It is proposed that the structure is a resonance associated with production and rapid decay of an excited state of the doubly charged Cl ion. A plausible mechanism for production of the di-anionic state based on an excitation plus capture process is suggested.
Resumo:
Absolute cross sections for single and double detachment from H– following electron impact have been measured over a range of collision energies from the thresholds to 170 eV. The measurements were made using a magnetic storage ring. The ions in the ring were merged with a monoenergetic electron beam and neutral and positively charged fragments were detected. We cover larger energy ranges than in many of the previous experiments, and this is the first time both single and double detachment have been measured simultaneously. This allows us to present accurate ratios between the single and double detachment cross sections. On the basis of these ratio measurements we discuss possible mechanisms leading to double detachment.
Resumo:
In recent years there have been many studies of multiple ionization of closed shell rare gas atoms by intense laser fields. Until now no similar work has been done in the study of more diverse targets such as negative ions where low binding energies and strong electron correlations could yield distinctive behaviour. We present the first results of ionization of more than one electron from a range of atomic negative ions by intense laser pulses. Although these pulses are long by modern standards, and tend to produce sequential ionization in atoms, the positive ion yields from the negative ions do not depend predictably on the ionization potentials. This suggests that there may, intriguingly, be an alternative mechanism enhancing double ionization at low intensities.
Resumo:
We present a technique for measuring the radiative lifetimes of metastable states of negative ions that involves the use of a heavy-ion storage ring. The method has been applied to investigate the radiative decay of the np3 2P1/2 levels of Te–(n=5) and Se–(n=4) and the 3p3 2D state of Si– for which the J=3/2 and 5/2 levels were unresolved. All of these states are metastable and decay primarily by emission of E2 and M1 radiation. Multi Configuration Dirac-Hartree-Fock calculations of rates for the transitions in Te– and Se– yielded lifetimes of 0.45 s and 4.7 s, respectively. The measured values agree well with these predicted values. In the case of the 2D state of Si–, however, our measurement was only able to set a lower limit on the lifetime. The upper limit of the lifetime that can be measured with our apparatus is set by how long the ions can be stored in the ring, a limit determined by the rate of collisional detachment. Our lower limit of 1 min for the lifetime of the 2D state is consistent with both the calculated lifetimes of 162 s for the 2D3/2 level and 27.3 h for the 2D5/2 level reported by O'Malley and Beck and 14.5 h and 12.5 h, respectively, from our Breit-Pauli calculations.
Resumo:
The continuum distorted-wave eikonal-initial-state (CDW-EIS) theory of Crothers and McCann (Crothers DSF and McCann JF, 1983 J. Phys. B: At. Mol. Opt. Phys. 16 3229 ) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS, to incorporate the azimuthal ange dependence into the final-state wavefunction. This is accomplished by the analytic continuation of hydrogenic-like wavefunctions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 ke V u^{-1}, the total CDW-EIS ionization cross section falls off, with decreasing energy, too quickly in comparison with experimental data by Crothers and McCann. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment, by including contributions from non-zero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it.
Resumo:
A new approach to evaluating all multiple complex roots of analytical function f(z) confined to the specified rectangular domain of complex plane has been developed and implemented in Fortran code. Generally f (z), despite being holomorphic function, does not have a closed analytical form thereby inhibiting explicit evaluation of its derivatives. The latter constraint poses a major challenge to implementation of the robust numerical algorithm. This work is at the instrumental level and provides an enabling tool for solving a broad class of eigenvalue problems and polynomial approximations.
Resumo:
In mixed signal integrated circuits noise from the digital circuitry can upset the sensitive analogue circuitry. The Faraday cage structure reported here is based on the unique ground plane SOI technology developed some of the authors. The suppression of crosstalk achieved is an order of magnitude greater than that previously published for frequencies up to 10 GHz. The significance of the technology will be even greater as the operating frequency is increased. This collaborative EPSRC project was judge as tending to outstanding.
Resumo:
The performance of silicon bipolar transistors has been significantly improved by the use of ultra narrow base layers of SiGe. To further improve device performance by minimising parasitic resistance and capacitance the authors produced an unique silicon-on-insulator (SOI) substrate incorporating a buried tungsten disilicide layer. This structure forms the basis of a recent submission by Zarlink Semiconductors ( Silvaco, DeMontfort & Queen�s) to DTI for high voltage devices for automotive applications. The Queen�s part of the original EPSRC project was rated as tending to outstanding.
Resumo:
Future read heads in hard disc storage require high conformal coatings of metal magnetic layers over high aspect ratio profiles. This paper describes pioneering work on the use of MOCVD for the deposition of cobalt layers. While pure cobalt layers could be deposited at 400C their magnetic properties are poor. It was found that the magnetic properties of the layers could be significantly enhanced with an optimised rapid thermal anneal. This work was sponsored by Seagate Technology and led to a follow up PhD studentship on the co-deposition of cobalt and iron by MOCVD.