182 resultados para Annihilation reactions
Resumo:
The chemical equilibrium of mutual interconversions of tert-butylbenzenes was studied in the temperature range 286 to 423 K using chloroaluminate ionic liquids as a catalyst. Enthalpies of five reactions of isomerization and transalkylation of tert-butylbenzenes were obtained from temperature dependences of the corresponding equilibrium constants in the liquid phase. Molar enthalpies of vaporization of methyl-tert-butylbenzenes and 1,4-ditert-butylbenzene were obtained by the transpiration method and were used for a recalculation of enthalpies of reactions and equilibrium constants into the gaseous phase. Using these experimental results, ab initio methods (B3LYP and G3MP2) have been tested for prediction thermodynamic functions of the five reactions under study successfully. Thermochemical investigations of tert-butyl benzenes available in the literature combined with experimental results have helped to resolve contradictions in the available thermochemical data for tert-butylbenzene and to recommend consistent and reliable enthalpies of formation for this compound in the liquid and the gaseous state.
Resumo:
The first thiazolium gold(III) compound that qualifies as an ionic liquid has been prepared and crystallographically characterized. Hydration of phenylacetylene with this compound as catalyst precursor in ionic liquids indicates that gold(Ill)based ionic liquids could serve both as solvents and catalysts for organic transformations. The potential re-use of catalysts is an advantage achieved by recycling the ionic liquid phase. Various imidazolium-derived ionic liquids as well as the new thiazolium compound can be converted into gold carbene complexes by sequential deprotonation and coordination, opening the way for in situ catalyst tailoring. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
By enabling a comparison between what is and what might have been, counterfactual thoughts amplify our emotional responses to bad outcomes. Well-known demonstrations such as the action effect (the tendency to attribute most regret to a character whose actions brought about a bad outcome) and the temporal order effect (the tendency to undo the last in a series of events leading up to a bad outcome) are often explained in this way. An important difference between these effects is that outcomes are due to decisions in the action effect, whereas in the temporal order effect outcomes are achieved by chance. In Experiment 1, we showed that imposing time pressure leads to a significant reduction in the action but not in the temporal order effect. In Experiment 2, we found that asking participants to evaluate the protagonists (
Resumo:
N-Acetyl-2-azetine undergoes Lewis acid catalysed formal [4+2]-cycloaddition with imines derived from aromatic amines to initially give an approximately 1: 1 mixture of exo-endo-diastereoisomeric 1-(2a,3,4,8b-tetrahydro-2H-1,4-diaza-cyclobuta[a]naphthalen-1-yl)-ethanone cycloadducts which were detected by proton NMR spectroscopy. These products, which were too unstable to isolate, and characterise, reacted further with aromatic amines to give 2,3,4-trisubstituted tetrahydroquinolines in good to excellent yield, predominantly as a single diastereoisomer, with the minor diastereoisomer converting to the major diastereoisomer on silica. The cycloaddition was irreversible and a mechanism is presented for the formation of the major diastereoisomer from the mixture of diastereoisomeric intermediates. A range of conditions is described for converting the 2,3,4-trisubsitituted tetrahydroquinolines into 2,3-disubstituted quinolines.
Resumo:
N-Acetyl-2-azetine undergoes Lewis acid catalysed [4 + 2]-cycloaddition with imines derived from aromatic amines and gave a 1:1 mixture of exo-endo diastereoisomeric azetidine cycloadducts which reacted further with aromatic amine, to give 2,3,4-trisubsitituted tetrahydroquinolines in good to excellent yield, predominantly as one diastereoisomer.
Resumo:
A survey of conditions for the palladium catalyzed intramol. Heck cyclization of protected amines has shown that the Herrmann-Beller palladacycle can be exploited under 'cationic' conditions to provide a robust and rapid route (
Resumo:
Ammonolysis of N-(halogenoalkyl)azetidin-2-ones affords medium ring azalactams via transamidation but large or strained rings are not isolated, acyclic ?-amino-amides being produced; two successive transamidative ring expansions from 4-phenylazetidin-2-one give a synthesis of (?)-dihydroperiphylline (I).
Resumo:
Rhodium(II) acetate-catalyzed reaction of Et 2-diazo-2-diethoxyphosphorylate, EtO2CC(:N2)PO(OEt)2, with carbamates, amides, ureas or anilines gives a range of N-substituted 2-amino-2-diethoxyphosphorylacetates, EtO2CCH(NHR1)PO(OEt)2 (where R1 = Boc, Cbz, acetyl, propionyl, pivaloyl, n-Pr, Ph and substituted Ph groups), by N-H insertion reaction of the intermediate rhodium carbenoid.
Resumo:
Rh(II) acetate-catalyzed decompn. of diazophenylacetates PhC(N2)CO2Me 1 and PhC(N2)CO2R* 3 [R*OH = (-)-borneol, (+)-menthol, (-)-8-phenylmenthol] in the presence of a range of N-H compds. results in an N-H insertion reaction of the intermediate carbenoids and formation of N-substituted phenylglycine derivs. PhCH(NR1R2)CO2Me 2 [R1 = R2 = Et; R1 = 4-MeOC6H4, COCH2CHMe2, CO2CH2Ph, (S)-CH(CO2Me)CH2Ph, (S)-CHMePh, R2 = H; 64-83% yields] and PhCH(NR1R2)CO2R* 4 (R1 = R2 = Et; R1 = COMe, CO2Me, R2 = H; same R*; 37-71% yields). The corresponding reactions of di-Me ?-diazobenzylphosphonate PhC(N2)P(O)(OMe)2 5 with primary amines constitute a simple route to aminophosphonates PhCH(NHR)P(O)(OMe)2 6 (R = COMe, COEt, CO2CH2Ph, CO2CMe3, 4-ClC6H4, 4-MeC6H4, 4-MeOC6H4; 13-96% yields).