105 resultados para Anisotropic diffusion
Resumo:
In this paper, a method for modeling diffusive boundaries in finite difference time domain (FDTD) room acoustics simulations with the use of impedance filters is presented. The proposed technique is based on the concept of phase grating diffusers, and realized by designing boundary impedance filters from normal-incidence reflection filters with added delay. These added delays, that correspond to the diffuser well depths, are varied across the boundary surface, and implemented using Thiran allpass filters. The proposed method for simulating sound scattering is suitable for modeling high frequency diffusion caused by small variations in surface roughness and, more generally, diffusers characterized by narrow wells with infinitely thin separators. This concept is also applicable to other wave-based modeling techniques. The approach is validated by comparing numerical results for Schroeder diffusers to measured data. In addition, it is proposed that irregular surfaces are modeled by shaping them with Brownian noise, giving good control over the sound scattering properties of the simulated boundary through two parameters, namely the spectral density exponent and the maximum well depth.
Resumo:
We propose a new approach for the inversion of anisotropic P-wave data based on Monte Carlo methods combined with a multigrid approach. Simulated annealing facilitates objective minimization of the functional characterizing the misfit between observed and predicted traveltimes, as controlled by the Thomsen anisotropy parameters (epsilon, delta). Cycling between finer and coarser grids enhances the computational efficiency of the inversion process, thus accelerating the convergence of the solution while acting as a regularization technique of the inverse problem. Multigrid perturbation samples the probability density function without the requirements for the user to adjust tuning parameters. This increases the probability that the preferred global, rather than a poor local, minimum is attained. Undertaking multigrid refinement and Monte Carlo search in parallel produces more robust convergence than does the initially more intuitive approach of completing them sequentially. We demonstrate the usefulness of the new multigrid Monte Carlo (MGMC) scheme by applying it to (a) synthetic, noise-contaminated data reflecting an isotropic subsurface of constant slowness, horizontally layered geologic media and discrete subsurface anomalies; and (b) a crosshole seismic data set acquired by previous authors at the Reskajeage test site in Cornwall, UK. Inverted distributions of slowness (s) and the Thomson anisotropy parameters (epsilon, delta) compare favourably with those obtained previously using a popular matrix-based method. Reconstruction of the Thomsen epsilon parameter is particularly robust compared to that of slowness and the Thomsen delta parameter, even in the face of complex subsurface anomalies. The Thomsen epsilon and delta parameters have enhanced sensitivities to bulk-fabric and fracture-based anisotropies in the TI medium at Reskajeage. Because reconstruction of slowness (s) is intimately linked to that epsilon and delta in the MGMC scheme, inverted images of phase velocity reflect the integrated effects of these two modes of anisotropy. The new MGMC technique thus promises to facilitate rapid inversion of crosshole P-wave data for seismic slownesses and the Thomsen anisotropy parameters, with minimal user input in the inversion process.
Resumo:
In this paper, a method for modeling diffusion caused by non-smooth boundary surfaces in simulations of room acoustics using finite difference time domain (FDTD) technique is investigated. The proposed approach adopts the well-known theory of phase grating diffusers to efficiently model sound scattering from rough surfaces. The variation of diffuser well-depths is attained by nesting allpass filters within the reflection filters from which the digital impedance filters used in the boundary implementation are obtained. The presented technique is appropriate for modeling diffusion at high frequencies caused by small surface roughness and generally diffusers that have narrow wells and infinitely thin separators. The diffusion coefficient was measured with numerical experiments for a range of fractional Brownian diffusers.
Resumo:
We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an increasing eccentricity of the trapping potential. By breaking the rotational symmetry, the vortex system undergoes a rich variety of structural changes, including the formation of zigzag and linear configurations. These spatial rearrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the eccentricity parameter. This behavior allows to actively control the distribution of vorticity in many-body systems and opens the possibility of studying interactions between quantum vortices over a large range of parameters.
Resumo:
Supported ionic liquid membranes (SILMs) has the potential to be a new technological platform for gas/organic vapour separation because of the unique non-volatile nature and discriminating gas dissolution properties of room temperature ionic liquids (ILs). This work starts with an examination of gas dissolution and transport properties in bulk imidazulium cation based ionic liquids [Cnmim][NTf2] (n = 2.4, 6, 8.10) from simple gas H2, N2, to polar CO2, and C2H6, leading to a further analysis of how gas dissolution and diffusion are influenced by molecular specific gas-SILMs interactions, reflected by differences in gas dissolution enthalpy and entropy. These effects were elucidated again during gas permeation studies by examining how changes in these properties and molecular specific interactions work together to cause deviations from conventional solution–diffusion theory and their impact on some remarkably contrasting gas perm-selectivity performance. The experimental perm-selectivity for all tested gases showed varied and contrasting deviation from the solution–diffusion, depending on specific gas-IL combinations. It transpires permeation for simpler non-polar gases (H2, N2) is diffusion controlled, but strong molecular specific gas-ILs interactions led to a different permeation and selectivity performance for C2H6 and CO2. With exothermic dissolution enthalpy and large order disruptive entropy, C2H6 displayed the fastest permeation rate at increased gas phase pressure in spite of its smallest diffusivity among the tested gases. The C2H6 gas molecules “peg” on the side alkyl chain on the imidazulium cation at low concentration, and are well dispersed in the ionic liquids phase at high concentration. On the other hand strong CO2-ILs affinity resulted in a more prolonged “residence time” for the gas molecule, typified by reversed CO2/N2 selectivity and slowest CO2 transport despite CO2 possess the highest solubility and comparable diffusivity in the ionic liquids. The unique transport and dissolution behaviour of CO2 are further exploited by examining the residing state of CO2 molecules in the ionic liquid phase, which leads to a hypothesis of a condensing and holding capacity of ILs towards CO2, which provide an explanation to slower CO2 transport through the SILMs. The pressure related exponential increase in permeations rate is also analysed which suggests a typical concentration dependent diffusion rate at high gas concentration under increased gas feed pressure. Finally the strong influence of discriminating and molecular specific gas-ILs interactions on gas perm-selectivity performance points to future specific design of ionic liquids for targeted gas separations.
Resumo:
A history dependent stick probability is introduced to the diffusion-limited deposition model. The exponents in the scaling laws are calculated. The universality class is also discussed.
Resumo:
We have constructed a model for chemistry in the outflow of an asymptotic giant branch (AGB) star, using a spheroidal anisotropy in density, after that used by Jura. The predicted distributions of a selection of representative species are shown, and it is suggested that the abundance distributions observed by interferometry in IRC + 10216 may be the result of directional variation in outflow velocity.
Resumo:
Purpose The UK government argues that the benefits of public private partnership (PPP) in delivering public infrastructure stem from: transferring risks to the private sector within a structure in which financiers put their own capital at risk; and, the performance based payment mechanism, reinforced by the due diligence requirements imposed by the lenders financing the projects (HM Treasury, 2010). Prior studies of risk in PPPs have investigated ‘what’ risks are allocated and to ‘whom’, that is to the public or the private sector. The purpose of this study is to examine ‘how’ and ‘why’ PPP risks are diffused by their financiers. Design/methodology/approach This study focuses on the financial structure of PPPs and on their financiers. Empirical evidence comes from interviews conducted with equity and debt financiers. Findings The findings show that the financial structure of the deals generates risk aversion in both debt and equity financiers and that the need to attract affordable finance leads to risk diffusion through a network of companies using various means that include contractual mitigation through insurance, performance support guarantees, interest rate swaps and inflation hedges. Because of the complexity this process generates, both procurers and suppliers need expensive expert advice. The risk aversion and diffusion and the consequent need for advice add cost to the projects impacting on the government’s economic argument for risk transfer. Limitations and implications The empirical work covers the private finance initiative (PFI) type of PPP arrangements and therefore the risk diffusion mechanisms may not be generalisable to other forms of PPP, especially those that do not involve the use of high leverage or private finance. Moreover, the scope of this research is limited to exploring the diffusion of risk in the private sector. Further research is needed on how risk is diffused in other settings and on the value for money implication of risk diffusion in PPP contracts. Originality/value The expectation inherent in PPP is that the private sector will better manage those risks allocated to it and because private capital is at risk, financiers will perform due diligence with the ultimate outcome that only viable projects will proceed. This paper presents empirical evidence that raises questions about these expectations. Key words: public private partnership, risk management, diffusion, private finance initiative, financiers