121 resultados para Active audience
Resumo:
This paper reports the fabrication of SSOI (Silicon on Silicide On Insulator) substrates with active silicon regions only 0.5mum thick, incorporating LPCVD low resistivity tungsten silicide (WSix) as the buried layer. The substrates were produced using ion splitting and two stages of wafer bonding. Scanning acoustic microscope imaging confirmed that the bond interfaces are essentially void-free. These SSOI wafers are designed to be employed as substrates for mm-wave reflect-array diodes, and the required selective etch technology is described together with details of a suitable device.
Resumo:
Classification of the active surface sites of platinum catalysts responsible for low temperature N2O decomposition, in terms of steps, kinks and terraces, has been achieved by controlled addition of bismuth to as-received platinum/graphite catalysts.
Resumo:
Fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 angstrom wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the 3s(2)3p(5) P-2(3/2)-3s(2)3p(4)(S-1)3d D-2(3/2) transition at 195.32 angstrom is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density (N-e) diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between N-e = 10(8) and 10(11) cm(-3), and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine N-e, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 angstrom line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74. Electron densities deduced from 175.27/174.53 and 175.27/177.24 for the stars Procyon and alpha Cen, using observations from the Extreme-Ultraviolet Explorer (EUVE) satellite, are found to be consistent and in agreement with the values of N-e determined from other diagnostic ratios in the EUVE spectra. A comparison of several theoretical extreme-ultraviolet Fe X line ratios with experimental values for a theta-pinch, for which the plasma parameters have been independently determined, reveals reasonable agreement between theory and observation, providing some independent support for the accuracy of the adopted atomic data.
Resumo:
A detailed study is presented of the decaying solar-active region NOAA 10103 observed with the Coronal Diagnostic Spectrometer (CDS), the Michelson Doppler Imager (MDI) and the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Electron-density maps formed using Si x (356.03 angstrom/347.41 angstrom) show that the density varies from similar to 10(10) cm(-3) in the active-region core to similar to 7 x 108 cm-3 at the region boundaries. Over the 5 d of observations, the average electron density fell by similar to 30 per cent. Temperature maps formed using Fe XVI (335.41 angstrom)/Fe XIV (334.18 angstrom) show electron temperatures of similar to 2.34 x 10(6) K in the active-region core and similar to 2.10 x 10(6) K at the region boundaries. Similarly to the electron density, there was a small decrease in the average electron temperature over the 5-d period. The radiative, conductive and mass-flow losses were calculated and used to determine the resultant heating rate (P-H). Radiative losses were found to dominate the active-region cooling process. As the region decayed, the heating rate decreased by almost a factor of 5 between the first and last day of observations. The heating rate was then compared to the total unsigned magnetic flux (Phi(tot) = integral dA vertical bar B-z vertical bar), yielding a power law of the form P-H similar to Phi(0.81 +/- 0.32)(tot) This result suggests that waves rather than nanoflares may be the dominant heating mechanism in this active region.
Resumo:
Purpose: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application.
Experimental Design: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using “mismatch” following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition.
Results: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect.
Conclusion: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefit.
Resumo:
This paper explores the potential for active biological citizenship in the discursive space opened by the Community law rights to receive cross-border health care services. By focusing on the European Patients’ Forum and the European Public Health Association as examples of actors facilitated by the European Union, the paper notes how this space might provide some opportunities for patients’ strategic engagement, but also how EU governance discourse is shaping and undermining the potential for activism.
Resumo:
KF, LiF and CsF/A(2)O(3) catalysts with different loadings from 1 to 20 wt% were prepared using aqueous solutions of the alkaline fluoride compounds by wet impregnation of basic mesoporous MSU-type alumina. The catalysts were activated under At at 400 degrees C for 2 h and monitored by in situ XRD measurements. The catalysts were also characterized using several techniques: N-2 adsorption/desorption isotherms at -196 degrees C, FTIR, DR-UV-vis, CO2-TPD, XRD, Al-27 CP/MAS NMR. These characterizations led to the conclusion that the deposition of alkaline fluorides on the alumina surface generates fluoroaluminates and aluminate species. The process is definitivated at 400 degrees C. The fluorine in these structures is less basic than in the parent fluorides, but the oxygen becomes more basic. The catalysts were tested for the transesterification of fatty esters under different experimental conditions using conventional heating, microwave and Ultrasound irradiation. Recycling experiments showed that these catalysts are stable for a limited number of cycles. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A novel method for controlling wave energy converters using active bipolar damping is described and compared with current control methods. The performance of active bipolar damping is modelled numerically for two distinct types of wave energy converter and it is found that in both cases the power capture can be significantly increased relative to optimal linear damping. It is shown that this is because active bipolar damping has the potential for providing a quasi-spring or quasi-inertia, which improves the wave energy converter's tuning and amplitude of motion, resulting in the increase in power capture observed. The practical implementation of active bipolar damping is also discussed. It is noted that active bipolar damping does not require a reactive energy store and thereby reduces the cost and eliminates losses due to the cycling of reactive energy. It is also noted that active bipolar damping could be implemented using a single constant pressure double-acting hydraulic cylinder and so potentially represents a simple, efficient, robust and economic solution to the control of wave energy converters.