114 resultados para Transformed functions
Resumo:
We prove that the Frobenius-Perron operator $U$ of the cusp map $F:[-1,1]\to [-1,1]$, $F(x)=1-2 x^{1/2}$ (which is an approximation of the Poincare section of the Lorenz attractor) has no analytic eigenfunctions corresponding to eigenvalues different from 0 and 1. We also prove that for any $q\in (0,1)$ the spectrum of $U$ in the Hardy space in the disk $\{z\in C:|z-q|
Resumo:
Both the existence and the non-existence of a linearly ordered (by certain natural order relations) effective set of comparison functions (=dense comparison classes) are compatible with the ZFC axioms of set theory.
Resumo:
Modeling of on-body propagation channels is of paramount importance to those wishing to evaluate radio channel performance for wearable devices in body area networks (BANs). Difficulties in modeling arise due to the highly variable channel conditions related to changes in the user's state and local environment. This study characterizes these influences by using time-series analysis to examine and model signal characteristics for on-body radio channels in user stationary and mobile scenarios in four different locations: anechoic chamber, open office area, hallway, and outdoor environment. Autocorrelation and cross-correlation functions are reported and shown to be dependent on body state and surroundings. Autoregressive (AR) transfer functions are used to perform time-series analysis and develop models for fading in various on-body links. Due to the non-Gaussian nature of the logarithmically transformed observed signal envelope in the majority of mobile user states, a simple method for reproducing the failing based on lognormal and Nakagami statistics is proposed. The validity of the AR models is evaluated using hypothesis testing, which is based on the Ljung-Box statistic, and the estimated distributional parameters of the simulator output compared with those from experimental results.
Resumo:
SoC systems are now being increasingly constructed using a hierarchy of subsystems or silicon Intellectual Property (IP) cores. The key challenge is to use these cores in a highly efficient manner which can be difficult as the internal core structure may not be known. A design methodology based on synthesizing hierarchical circuit descriptions is presented. The paper employs the MARS synthesis scheduling algorithm within the existing IRIS synthesis flow and details how it can be enhanced to allow for design exploration of IP cores. It is shown that by accessing parameterised expressions for the datapath latencies in the cores, highly efficient FPGA solutions can be achieved. Hardware sharing at both the hierarchical and flattened levels is explored for a normalized lattice filter and results are presented.