The resonance spectrum of the cusp map in the space of analytic functions
Data(s) |
01/07/2002
|
---|---|
Resumo |
We prove that the Frobenius-Perron operator $U$ of the cusp map $F:[-1,1]\to [-1,1]$, $F(x)=1-2 x^{1/2}$ (which is an approximation of the Poincare section of the Lorenz attractor) has no analytic eigenfunctions corresponding to eigenvalues different from 0 and 1. We also prove that for any $q\in (0,1)$ the spectrum of $U$ in the Hardy space in the disk $\{z\in C:|z-q| |
Identificador |
http://dx.doi.org/10.1063/1.1483895 http://www.scopus.com/inward/record.url?scp=0036630008&partnerID=8YFLogxK |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2002 , ' The resonance spectrum of the cusp map in the space of analytic functions ' Journal of Mathematical Physics , vol 43 , no. 7 , pp. 3746-3758 . DOI: 10.1063/1.1483895 |
Palavras-Chave | #/dk/atira/pure/subjectarea/asjc/2600/2610 #Mathematical Physics #/dk/atira/pure/subjectarea/asjc/3100 #Physics and Astronomy(all) #/dk/atira/pure/subjectarea/asjc/3100/3109 #Statistical and Nonlinear Physics |
Tipo |
article |