The resonance spectrum of the cusp map in the space of analytic functions


Autoria(s): Shkarin, Stanislav
Data(s)

01/07/2002

Resumo

We prove that the Frobenius-Perron operator $U$ of the cusp map $F:[-1,1]\to [-1,1]$, $F(x)=1-2 x^{1/2}$ (which is an approximation of the Poincare section of the Lorenz attractor) has no analytic eigenfunctions corresponding to eigenvalues different from 0 and 1. We also prove that for any $q\in (0,1)$ the spectrum of $U$ in the Hardy space in the disk $\{z\in C:|z-q|

Identificador

http://pure.qub.ac.uk/portal/en/publications/the-resonance-spectrum-of-the-cusp-map-in-the-space-of-analytic-functions(d5171e58-4311-4eec-bfba-69819ba14309).html

http://dx.doi.org/10.1063/1.1483895

http://www.scopus.com/inward/record.url?scp=0036630008&partnerID=8YFLogxK

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Shkarin , S 2002 , ' The resonance spectrum of the cusp map in the space of analytic functions ' Journal of Mathematical Physics , vol 43 , no. 7 , pp. 3746-3758 . DOI: 10.1063/1.1483895

Palavras-Chave #/dk/atira/pure/subjectarea/asjc/2600/2610 #Mathematical Physics #/dk/atira/pure/subjectarea/asjc/3100 #Physics and Astronomy(all) #/dk/atira/pure/subjectarea/asjc/3100/3109 #Statistical and Nonlinear Physics
Tipo

article