57 resultados para No fault insurance.
Resumo:
This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.
Resumo:
Wavelet transforms provide basis functions for time-frequency analysis and have properties that are particularly useful for the compression of analogue point on wave transient and disturbance power system signals. This paper evaluates the compression properties of the discrete wavelet transform using actual power system data. The results presented in the paper indicate that reduction ratios up to 10:1 with acceptable distortion are achievable. The paper discusses the application of the reduction method for expedient fault analysis and protection assessment.
Resumo:
This paper presents a novel detection method for broken rotor bar fault (BRB) in induction motors based on Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Simulated Annealing Algorithm (SAA). The performance of ESPRIT is tested with simulated stator current signal of an induction motor with BRB. It shows that even with a short-time measurement data, the technique is capable of correctly identifying the frequencies of the BRB characteristic components but with a low accuracy on the amplitudes and initial phases of those components. SAA is then used to determine their amplitudes and initial phases and shows satisfactory results. Finally, experiments on a 3kW, 380V, 50Hz induction motor are conducted to demonstrate the effectiveness of the ESPRIT-SAA-based method in detecting BRB with short-time measurement data. It proves that the proposed method is a promising choice for BRB detection in induction motors operating with small slip and fluctuant load.
Resumo:
In this paper, the authors have presented one approach to configuring a Wafer-Scale Integration Chip. The approach described is called the 'WINNER', in which bus channels and an external controller for configuring the working processors are not required. In addition, the technique is applicable to high availability systems constructed using conventional methods. The technique can also be extended to arrays of arbitrary size and with any degree of fault tolerance simply by using an appropriate number of cells.
Resumo:
Methods by which bit level systolic array chips can be made fault tolerant are discussed briefly. Using a simple analysis based on both Poisson and Bose-Einstein statistics authors demonstrate that such techniques can be used to obtain significant yield enhancement. Alternatively, the dimensions of an array can be increased considerably for the same initial (nonfault tolerant) chip yield.
Resumo:
The adoption of each new level of automotive emissions legislation often requires the introduction of additional emissions reduction techniques or the development of existing emissions control systems. This, in turn, usually requires the implementation of new sensors and hardware which must subsequently be monitored by the on-board fault detection systems. The reliable detection and diagnosis of faults in these systems or sensors, which result in the tailpipe emissions rising above the progressively lower failure thresholds, provides enormous challenges for OBD engineers. This paper gives a review of the field of fault detection and diagnostics as used in the automotive industry. Previous work is discussed and particular emphasis is placed on the various strategies and techniques employed. Methodologies such as state estimation, parity equations and parameter estimation are explained with their application within a physical model diagnostic structure. The utilization of symptoms and residuals in the diagnostic process is also discussed. These traditional physical model based diagnostics are investigated in terms of their limitations. The requirements from the OBD legislation are also addressed. Additionally, novel diagnostic techniques, such as principal component analysis (PCA) are also presented as a potential method of achieving the monitoring requirements of current and future OBD legislation.
Resumo:
A reduction in the time required to locate and restore faults on a utility's distribution network improves the customer minutes lost (CML) measurement and hence brings direct cost savings to the operating company. The traditional approach to fault location involves fault impedance determination from high volume waveform files dispatched across a communications channel to a central location for processing and analysis. This paper examines an alternative scheme where data processing is undertaken locally within a recording instrument thus reducing the volume of data to be transmitted. Processed event fault reports may be emailed to relevant operational staff for the timely repair and restoration of the line.
Resumo:
Fault and fracture systems are the most important store and pathway for groundwater in Ireland’s bedrock aquifers, either directly as conductive flow structures, or indirectly as the locus for the development of dolomitised limestone and karst. This article presents the preliminary results of a study involving the quantitative analysis of fault and fracture systems in the broad range of Irish bedrock types and a consideration of their impact on groundwater flow. The principal aims of the project are to develop generic conceptual models for different fault/fracture systems in different lithologies and at different depths, and to link them to observed groundwater behaviour. Here we briefly describe the geometrical characteristics of the main post-Devonian fault/fracture systems controlling groundwater flow from field observations at outcrops, quarries and mines. The structures range from Lower Carboniferous normal faults through to Variscan-related faults and veins, with the most recent structures including Tertiary strike-slip faults and ubiquitous uplift-related joint systems. The geometrical characteristics of different fault/fracture systems combined with observations of groundwater behaviour in both quarry and mine localities, can be linked to general flow and transport conceptualisations of Irish fractured bedrock. Most importantly they also provide a basis for relating groundwater flow to particular fault/fracture systems and their expression with depth and within different lithological sequences, as well as their regional variability.
Resumo:
Compared to half-bridge based MMCs, full-bridge based systems have the advantage of blocking dc fault, but at the expense of increased power semiconductors and power losses. In view of the relationships among ac/dc voltages and currents in full-bridge based MMC with the negative voltage state, this paper provides a detailed analysis on the link between capacitor voltage variation and the maximum modulation index. A hybrid MMC, consisting of mixed half-bridge and full-bridge circuits to combine their respective advantages is investigated in terms of its pre-charging process and transient dc fault ride-through capability. Simulation and experiment results demonstrate the feasibility and validity of the proposed strategy for a full-bridge based MMC and the hybrid MMC.