186 resultados para Healthy Aging
Resumo:
A novel recombinant respiratory syncytial virus (RSV) subunit vaccine, designated BBG2Na, was administered to 108 healthy adults randomly assigned to receive 10, 100, or 300 μg of BBG2Na in aluminum phosphate or saline placebo. Each subject received 1, 2, or 3 intramuscular injections of the assigned dose at monthly intervals. Local and systemic reactions were mild, and no evidence of harmful properties of BBG2Na was reported. The highest ELISA and virus-neutralizing (VN) antibody responses were evident in the 100- and 300-μg groups; second or third injections provided no significant boosts against RSV-derived antigens. BBG2Na induced ⩾2-fold and ⩾4-fold increases in G2Na-specific ELISA units in up to 100% and 57% of subjects, respectively; corresponding RSV-A–specific responses were 89% and 67%. Furthermore, up to 71% of subjects had ⩾2-fold VN titer increases. Antibody responses to 2 murine lung protective epitopes were also highly boosted after vaccination. Therefore, BBG2Na is safe, well tolerated, and highly immunogenic in RSV-seropositive adults
Resumo:
Small changes of diet may reduce CVD risk. One example is the inclusion of nuts. They are rich in fibre, unsaturated fatty acids and phytonutrients. However, their fat content and energy density raise concerns that chronic consumption will promote weight gain. Randomised intervention studies are required to evaluate whether this concern is well founded. This study's aim was to determine if the inclusion of a 1440 kJ serving of almonds in the daily diet results in positive energy balance, and body composition change. During a 23-week cross-over design study, participants were required to consume almonds for 10 weeks and were provided no advice on how to include them in their diet. For another 10 weeks (order counter-balanced), participants followed their customary diet and there was a 3-week washout between. The study group consisted of twenty women. Potential mechanisms of energy dissipation were measured. Ten weeks of daily almond consumption did not cause a change in body weight. This was predominantly due to compensation for the energy contained in the almonds through reduced food intake from other sources. Moreover, inefficiency in the absorption of energy from almonds was documented (P <0·05). No changes in resting metabolic rate, thermic effect of food or total energy expenditure were noted. A daily 1440 kJ serving of almonds, sufficient to provide beneficial effects on cardiovascular risk factors, may be included in the diet with limited risk of weight gain. Whether this can be generalised to other high-fat energy dense foods warrants evaluation.
Resumo:
Platelets release glutamate upon activation and are an important clearance system of the amino acid from blood, through high-affinity glutamate uptake, similar to that described in brain synaptosomes. Since platelet glutamate uptake is decreased in neurodegenerative disorders, we performed a morphological and molecular characterization of platelet glutamate transporters. The three major brain glutamate transporters EAAT1, EAAT2 and EAAT3 are expressed in platelets, with similar molecular weight, although at lower density than brain. A Na(+)-dependent-high-affinity glutamate uptake was competitively inhibited by known inhibitors but not by dihydrokainic acid, suggesting platelet EAAT2 does not play a major role in glutamate uptake at physiological conditions. We observed decreased glutamate uptake V(max), without modification of transporter affinity, in aging, which could be linked to the selective decrease of EAAT1 expression and mRNA. Moreover, in AD patients we found a further EAAT1 reduction compared to age-matched controls, which could explain the decrease of platelet uptake previously described. Platelet glutamate transporters may be used as peripheral markers to investigate the role of glutamate in patients with neuropsychiatric disorders.
Resumo:
The recently discovered aging-dependent large accumulation of point mutations in the human fibroblast mtDNA control region raised the question of their occurrence in postmitotic tissues. In the present work, analysis of biopsied or autopsied human skeletal muscle revealed the absence or only minimal presence of those mutations. By contrast, surprisingly, most of 26 individuals 53 to 92 years old, without a known history of neuromuscular disease, exhibited at mtDNA replication control sites in muscle an accumulation of two new point mutations, i.e., A189G and T408A, which were absent or marginally present in 19 individuals younger than 34 years. These two mutations were not found in fibroblasts from 22 subjects 64 to 101 years of age (T408A), or were present only in three subjects in very low amounts (A189G). Furthermore, in several older individuals exhibiting an accumulation in muscle of one or both of these mutations, they were nearly absent in other tissues, whereas the most frequent fibroblast-specific mutation (T414G) was present in skin, but not in muscle. Among eight additional individuals exhibiting partial denervation of their biopsied muscle, four subjects >80 years old had accumulated the two muscle-specific point mutations, which were, conversely, present at only very low levels in four subjects <or =40 years old. The striking tissue specificity of the muscle mtDNA mutations detected here and their mapping at critical sites for mtDNA replication strongly point to the involvement of a specific mutagenic machinery and to the functional relevance of these mutations.