70 resultados para Glass
Resumo:
The mechanical response of Polyethylene Terephthalate (PET) in elongation is strongly dependent on temperature, strain and strain rate. Near the glass transition temperature Tg, the stress-strain curve presents a strain softening effect vs strain rate but a strain hardening effect vs strain under conditions of large deformations. The main goal of this work is to propose a viscoelastic model to predict the PET behaviour when subjected to large deformations and to determine the material properties from the experimental data. To represent the non–linear effects, an elastic part depending on the elastic equivalent strain and a non-Newtonian viscous part depending on both viscous equivalent strain rate and cumulated viscous strain are tested. The model parameters can then be accurately obtained trough a comparison with the experimental uniaxial and biaxial tests. The in?uence of the temperature on the viscous part is also modelled and an evaluation of the adiabatic self heating of the specimen is compared to experimental results.
Resumo:
Na+ ions have a detrimental effect on the photocatalytic activity of thin sot gel films deposited on soda lime glass due to their diffusion into the film during the calcination process. Given that the content of sodium in glass substrate might be the crucial parameter in determining the activity of a photocatalyst, the aim of the present work was the comparison of the photoinduced properties of a thin TiO2 film prepared on three different glass substrates namely on quartz (Q) glass, borosilicate (BS) glass and soda lime (SL) glass which have different sodium content. The prepared layers were characterised by X-ray diffraction and UV-vis spectroscopy. The diffusion of Na+ from the substrate into the layers was determined by Glow Discharge Atomic Emission Spectroscopy. The photocatalytic activities of the films were assessed using two model pollutant test systems (resazurin/resorufin ink and stearic acid film), which appeared to correlate reasonably well. It was observed that TiO2 layer on SL glass has a brookite crystalline structure while the TiO2 layer on BS and Q glass has an anatase crystalline structure. On the other hand, the photodegradation of the model dye on TiO2 films deposited on Q and BS glass is about an order higher than on SL glass. The low sodium content of BS glass makes it the most suitable substrate for the deposition of photoactive sol gel TiO2 films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A novel route involving atmospheric pressure chemical vapour deposition (APCVD) is reported for coating Nb2O5 onto glass substrates via the reaction of NbCl5 and ethyl acetate at 400-660degreesC. Raman spectroscopy is shown to be a simple diagnostic tool for the analysis of these thin films. The contact angle of water on Nb2O5-coated glass drops on UV irradiation from 60degrees to 5-20degrees. XPS Analysis showed that the Nb:O ratio of the film was 1:2.5. Glancing angle X-ray diffraction showed that all films were crystalline, with only a single phase being observed; this has some preferred orientation in the (201) plane of Nb2O5. The niobium(V) oxide materials show minimal photocatalytic ability to degrade organic material.
Resumo:
High levels of ozone (typically 850 ppm) are readily decomposed by semiconductor photocatalysis, using a thin film of the semiconductor titanium dioxide (Degussa P25 TiO2) cast on a glass tube, and UVA light, i.e. light of energy greater than that of the bandgap of the semiconductor (ultra-bandgap light); in the absence of this light the thermal decomposition of ozone is relatively slow. The semiconductor films show no evidence of chemical or photochemical wear with repeated use. At high levels of ozone, i.e. 100 ppm less than or equal to [O-3] less than or equal to 1400 ppm, the initial rate of ozone decomposition by semiconductor photocatalysis is independent of [O-3], whereas, at lower ozone concentrations, i.e. 5 ppm less than or equal to [O-3] less than or equal to 100 ppm, the initial rate of ozone photodestruction decreases in a smooth, but non-linear, manner with decreasing [O-3]. The kinetics of ozone photodecomposition fit a Langmuir-Hinshelwood type kinetic equation and the possible mechanistic implications of these results are briefly discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Acidification of an isopropanol solution containing mixtures of [Ti(OPri)(4)] and [W(OEt)(5)] produced solutions from which various TiO2, WO3 and TiO2/WO3 thin films could be obtained by dip coating and annealing. The films were analysed by X-ray diffraction, SEM/EDAX, Raman, electronic spectra, contact angle and photoactivity with respect to destruction of an over layer of stearic acid. The TiO2/WO3 films were shown to be mixtures of two phases TiO2 and WO3 rather than a solid solution TixWyO2. The 2% tungsten oxide doped titania films were shown to be the most effective photocatalysts. All of the TiO2 and TiO2/WO3 films showed light induced superhydrophillicity. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Thin (50-500 nm) films of TiO2 may be deposited on glass substrates by the atmospheric pressure chemical vapor deposition (APCVD) reaction of TiCl4 with ethyl acetate at 400600 C. The TiO2 films are exclusively in the form of anatase, as established by Raman microscopy and glancing angle X-ray diffraction. X-ray photoelectron spectroscopy gave a 1:2 Ti:O ratio with Ti 2P(3/2) at 458.6 eV and O 1s is at 530.6 eV. The water droplet contact angle drops from 60degrees to
Resumo:
Atmospheric pressure chemical vapour deposition of titanium dioxide coatings on glass substrates was achieved by the reaction of TiCl4 and a co-oxygen source (MeOH, EtOH, (PrOH)-Pr-i or H2O) at 500-650degreesC. The coatings show excellent uniformity, surface coverage and adherence. Growth rates were of the order of 0.3 mum min(-1) at 500degreesC. All films are crystalline and single phase with XRD showing the anatase TiO2 diffraction pattern; a = 3.78(1), c = 9.51(1) Angstrom. Optically, the films show minimal reflectivity from 300-1600 nm and 50-80% total transmission from 300-800 nm. Contact angles are in the range 20-40degrees for as-prepared films and 1-10degrees after 30 min irradiation at 254 nm. All of the films show significant photocatalyic activity as regards the destruction of an overlayer of stearic acid.
Resumo:
TiO2 coated glass shows excellent stability in the range pH 2-9, however, there is rapid and complete stripping of the TiO2 coating between pH 11 and 12.