180 resultados para Filtro Attivo raddrizzatore active rectifire regolatori risonanti
Resumo:
The coronavirus main protease, Mpro, is considered to be a major target for drugs suitable for combating coronavirus infections including severe acute respiratory syndrome (SARS). An HPLC-based screening of electrophilic compounds that was performed to identify potential Mpro inhibitors revealed etacrynic acid tert-butylamide (6a) as an effective nonpeptidic inhibitor. Docking studies suggested a binding mode in which the phenyl ring acts as a spacer bridging the inhibitor's activated double bond and its hydrophobic tert-butyl moiety. The latter is supposed to fit into the S4 pocket of the target protease. Furthermore, these studies revealed etacrynic acid amide (6b) as a promising lead for nonpeptidic active-site-directed Mpro inhibitors. In a fluorimetric enzyme assay using a novel fluorescence resonance energy transfer (FRET) pair labeled substrate, compound 6b showed a Ki value of 35.3 M. Since the novel lead compound does not target the S1', S1, and S2 subsites of the enzyme's substrate-binding pockets, there is room for improvement that underlines the lead character of compound 6b.
Resumo:
The coronavirus main protease, Mpro, is considered a major target for drugs suitable to combat coronavirus infections including the severe acute respiratory syndrome (SARS). In this study, comprehensive HPLC- and FRET-substrate-based screenings of various electrophilic compounds were performed to identify potential Mpro inhibitors. The data revealed that the coronaviral main protease is inhibited by aziridine- and oxirane-2-carboxylates. Among the trans-configured aziridine-2,3-dicarboxylates the Gly-Gly-containing peptide 2c was found to be the most potent inhibitor.
Resumo:
Formation of the coronavirus replication-transcription complex involves the synthesis of large polyprotein precursors that are extensively processed by virus-encoded cysteine proteases. In this study, the coding sequence of the feline infectious peritonitis virus (FIPV) main protease, 3CL(pro), was determined. Comparative sequence analyses revealed that FIPV 3CL(pro) and other coronavirus main proteases are related most closely to the 3C-like proteases of potyviruses. The predicted active centre of the coronavirus enzymes has accepted unique replacements that were probed by extensive mutational analysis. The wild-type FIPV 3CL(pro) domain and 25 mutants were expressed in Escherichia coli and tested for proteolytic activity in a peptide-based assay. The data strongly suggest that, first, the FIPV 3CL(pro) catalytic system employs His(41) and Cys(144) as the principal catalytic residues. Second, the amino acids Tyr(160) and His(162), which are part of the conserved sequence signature Tyr(160)-Met(161)-His(162) and are believed to be involved in substrate recognition, were found to be indispensable for proteolytic activity. Third, replacements of Gly(83) and Asn(64), which were candidates to occupy the position spatially equivalent to that of the catalytic Asp residue of chymotrypsin-like proteases, resulted in proteolytically active proteins. Surprisingly, some of the Asn(64) mutants even exhibited strongly increased activities. Similar results were obtained for human coronavirus (HCoV) 3CL(pro) mutants in which the equivalent Asn residue (HCoV 3CL(pro) Asn(64)) was substituted. These data lead us to conclude that both the catalytic systems and substrate-binding pockets of coronavirus main proteases differ from those of other RNA virus 3C and 3C-like proteases.
Resumo:
A three-phase four-wire shunt active power filter for harmonic mitigation and reactive power compensation in power systems supplying nonlinear loads is presented. Three adaptive linear neurons are used to tackle the desired three-phase filter current templates. Another feedforward three-layer neural network is adopted to control the output filter compensating currents online. This is accomplished by producing the appropriate switching patterns of the converter's legs IGBTs. Adequate tracking of the filter current references is obtained by this method. The active filter injects the current required to compensate for the harmonic and reactive components of the line currents, Simulation results of the proposed active filter indicate a remarkable improvement in the source current waveforms. This is reflected in the enhancement of the unified power quality index defined. Also, the filter has exhibited quite a high dynamic response for step variations in the load current, assuring its potential for real-time applications
Resumo:
The propagation of acoustic nonlinear excitations in an electron-positron-ion (e-p-i) plasma composed of warm electrons and positrons, as well as hot ions, has been investigated by adopting a two-dimensional cylindrical geometry. The electrons and positrons are modeled by hydrodynamic fluid equations, while the ions are assumed to follow a temperature-parametrized Boltzmann distribution (the fixed ion model is recovered in the appropriate limit). This situation applies in the accretion disk near a black hole in active galactic nuclei, where the ion temperature may be as high as 3 to 300 times that of the electrons. Using a reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation is derived and its exact soliton solutions are presented. Furthermore, real situations in which the strength of the nonlinearity may be weak are considered, so that higher-order nonlinearity plays an important role. Accordingly, an extended cylindrical Kadomtsev-Petviashvili equation is derived, which admits both soliton and double-layer solutions. The characteristics of the nonlinear excitations obtained are investigated in detail
Resumo:
High-cadence, synchronized, multiwavelength optical observations of a solar active region (NOAA 10794) are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system: the rapid dual imager. Wavelet analysis is undertaken to search for intensity related oscillatory signatures, and periodicities ranging from 20 to 370 s are found with significance levels exceeding 95%. Observations in the H-α blue wing show more penumbral oscillatory phenomena when compared to simultaneous G-band observations. The H-α oscillations are interpreted as the signatures of plasma motions with a mean velocity of 20 km s-1. The strong oscillatory power over H-α blue-wing and G-band penumbral bright grains is an indication of the Evershed flow with frequencies higher than previously reported.
Resumo:
CO multipulse temporal analysis of products (TAP) experiments were used to characterize a ceria-supported platinum catalyst after various oxidative and reductive pretreatments using O-2, H2O, CO2, and H-2. Based on the amount of CO consumed, using the final CO-saturated catalyst composition as the common state point, the oxidatively pretreated catalyst could be described using a general scale. From a kinetic analysis of the CO multipulse responses, two kinetic regimes corresponding to two types of active sites could be identified. As the temperature was raised, the number of the most active sites did not change while the amount of the less active site increased. Comparison of the number of active sites determined from the TAP data reported herein with that determined by a previous steady-state isotope transient kinetic analysis experiment showed excellent agreement. This correlation indicates that the (very fast response) TAP experiments can provide information regarding the number and type of active sites that are relevant to a catalyst under real reaction conditions. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper reports the fabrication of SSOI (Silicon on Silicide On Insulator) substrates with active silicon regions only 0.5mum thick, incorporating LPCVD low resistivity tungsten silicide (WSix) as the buried layer. The substrates were produced using ion splitting and two stages of wafer bonding. Scanning acoustic microscope imaging confirmed that the bond interfaces are essentially void-free. These SSOI wafers are designed to be employed as substrates for mm-wave reflect-array diodes, and the required selective etch technology is described together with details of a suitable device.