83 resultados para FORMING OLIGONUCLEOTIDES
Resumo:
A series of bis(oxazoline) metal(II) complexes has been supported on silica and carbon supports by non-covalent immobilisation using an ionic liquid. The catalytic performance of these solids was compared for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methyl pyruvate and 1-methoxy-1-trimethylsilyloxy-propene. In both reactions the enantioselectivity was strongly influenced by the choice of support displaying enantioselectivies (ee values) up to 40% higher than those conducted under homogeneous reaction conditions.
Resumo:
A 5'-O-monomethoxytritylthymidine-3'-S-thiophosphoramidite (3) has been used to prepare oligodeoxynucleotides containing 3'-thiothymidine on a solid phase support. The intermediate thiophosphites are most efficiently oxidised using tetrabutylammonium periodate.
Resumo:
Detections of CO, CS, SO, C2H, HCO+, HCN, HNC, H2CO, and C3H2 are reported from LIRS 36, a star-forming region in the Small Magellanic Cloud. (CO)-O-18, NO, CH3OH, and most notably CN have not been detected, while the rare isotopes (CO)-C-13 and, tentatively, (CS)-S-34 ar,seen. This is so far the most extensive molecular multiline study of an interstellar medium with a heavy element depletion exceeding a factor of four.
Resumo:
The desorption of oligonucleotides by 3 mu m laser irradiation has been studied by laser induced fluorescence imaging of the resulting gas phase plumes. Fitting of the plume data has been achieved by using a modified Maxwell Boltzmann distribution which incorporates a range of stream velocities. Spatial density profiles, velocities and temperature variation have been determined from these fits indicating that the oligonucleotide plume only achieves a partial thermal relaxation. This laser desorption technique may provide a means of overcoming the limited mass range of gas phase biomolecules available from thermal evaporation techniques.
Resumo:
An electron microscopical examination has been made of the fine structure and disposition of pancreatic polypeptide immunoreactive cells associated with the egg-forming apparatus in Diclidophora merlangi. The cell bodies are positioned in the parenchyma surrounding the ootype and taper to axon-like processes that extend to the ootype wall. The terminal regions of these processes branch and anastomose and, in places, the swollen endings or varicosities form synaptic appositions with the muscle fibres in the ootype wall. The cells are characterized by an extensive GER-Golgi system that is involved in the assembly and packaging of dense-cored vesicles. The vesicles accumulate in the axons and terminal varicosities, and their contents were found to be immunoreactive with antisera raised to the C-terminal hexapeptide amide of pancreatic polypeptide. It is concluded that the cells are neurosecretory in appearance and that, functionally, their secretions may serve to regulate ootype motility and thereby help co-ordinate egg production in the worm.
Resumo:
We discuss the quantum-circuit realization of the state of a nucleon in the scope of simple simmetry groups. Explicit algorithms are presented for the preparation of the state of a neutron or a proton as resulting from the composition of their quark constituents. We estimate the computational resources required for such a simulation and design a photonic network for its implementation. Moreover, we highlight that current work on three-body interactions in lattices of interacting qubits, combined with the measurement-based paradigm for quantum information processing, may also be suitable for the implementation of these nucleonic spin states.
Resumo:
The authors describe how a standard Rotman lens design can be readily adapted in order to allow reconfigurable beam
forming. This is achieved by applying concurrent excitations to the modified Rotman lens. A rationale for the design and
underlying behaviour of the modified, phase-aligned, Rotman lens as well as the deficiencies of a conventional Rotman lens
in this mode of operation are provided. Simulated and measured results are provided in order to illustrate the feasibility of the
approach suggested.
Resumo:
Naturally occurring boundaries between bundles of 90° stripe domains, which form in BaTiO3 lamellae on cooling through the Curie Temperature, have been characterized using both piezoresponse force microscopy (PFM) and scanning transmission electron microscopy (STEM). Detailed interpretation of the dipole configurations present at these boundaries (using data taken from PFM) shows that in the vast majority of cases they are composed of simple zigzag 180° domain walls. Topological information from STEM shows that occasionally domain bundle boundaries can support chains of dipole flux closure and quadrupole nanostructures, but these kinds of boundaries are comparatively rare; when such chains do exist, it is notable that singularities at the cores of the dipole
structures are avoided. The symmetry of the boundary shows that diads and centers of inversion exist at positions where core singularities should have been expected.
Resumo:
Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients.
Resumo:
Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 µs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation.
Resumo:
Umbilical cord blood-derived endothelial colony-forming cells (UCB-ECFC) show utility in neovascularization, but their contribution to osteogenesis has not been defined. Cocultures of UCB-ECFC with human fetal-mesenchymal stem cells (hfMSC) resulted in earlier induction of alkaline phosphatase (ALP) (Day 7 vs. 10) and increased mineralization (1.9×; p <.001) compared to hfMSC monocultures. This effect was mediated through soluble factors in ECFC-conditioned media, leading to 1.8-2.2× higher ALP levels and a 1.4-1.5× increase in calcium deposition (p <.01) in a dose-dependent manner. Transcriptomic and protein array studies demonstrated high basal levels of osteogenic (BMPs and TGF-ßs) and angiogenic (VEGF and angiopoietins) regulators. Comparison of defined UCB and adult peripheral blood ECFC showed higher osteogenic and angiogenic gene expression in UCB-ECFC. Subcutaneous implantation of UCB-ECFC with hfMSC in immunodeficient mice resulted in the formation of chimeric human vessels, with a 2.2-fold increase in host neovascularization compared to hfMSC-only implants (p = .001). We conclude that this study shows that UCB-ECFC have potential in therapeutic angiogenesis and osteogenic applications in conjunction with MSC. We speculate that UCB-ECFC play an important role in skeletal and vascular development during perinatal development but less so in later life when expression of key osteogenesis and angiogenesis genes in ECFC is lower.
Resumo:
We characterized hydrogels, prepared from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) and poly(ethylene glycol) (PEG 10,000 Daltons) containing a pore-forming agent (sodium bicarbonate, NaHCO ). Increase in NaHCO content increased the equilibrium water content (EWC) and average molecular weight between crosslinks (M ) of hydrogels. For example, the %EWC was 731, 860, 1109, and 7536% and the M was 8.26, 31.64, 30.04, and 3010.00 × 10 g/mol for hydrogels prepared from aqueous blends containing 0, 1, 2, and 5% w/w of NaHCO , respectively. Increase in NaHCO content also resulted in increased permeation of insulin. After 24 h, percentage permeation was 0.94, 3.68, and 25.71% across hydrogel membranes prepared from aqueous blends containing 0, 2, and 5% w/w of NaHCO , respectively. Hydrogels containing the pore-forming agent were fabricated into microneedles (MNs) for transdermal drug delivery applications by integrating the MNs with insulin-loaded patches. It was observed that the mean amount of insulin permeating across neonatal porcine skin in vitro was 20.62% and 52.48% from hydrogel MNs prepared from aqueous blends containing 0 and 5% w/w of NaHCO . We believe that these pore-forming hydrogels are likely to prove extremely useful for applications in transdermal drug delivery of biomolecules. © 2012 Wiley Periodicals, Inc.