67 resultados para leaf extension


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a countable-dimensional Hausdorff locally convex topological vector space $E$ and a stratifiable closed linear subspace $F$ subset of $E$ such that any linear extension operator from $C_b(F)$ to $C_b(E)$ is unbounded (here $C_b(X)$ stands for the Banach space of continuous bounded real-valued functions on $X$).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A design methodology to optimise the ratio of maximum oscillation frequency to cutoff frequency, f(MAX)/f(T), in 60 nm FinFETs is presented. Results show that 25 to 60% improvement in f(MAX)/f(T) at drain currents of 20-300 mu A/mu m can be achieved in a non-overlap gate-source/drain architecture. The reported work provides new insights into the design and optimisation of nanoscale FinFETs for RF applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper proposes for the first time, a novel design methodology based on the optimization of source/drain extension (SDE) regions to significantly improve the trade-off between intrinsic voltage gain (A(vo)) and cut-off frequency (f(T)) in nanoscale double gate (DG) devices. Our results show that an optimally designed 25 nm gate length SDE region engineered DG MOSFET operating at drain current of 10 mu A/mu m, exhibits up to 65% improvement in intrinsic voltage gain and 85% in cut-off frequency over devices designed with abrupt SIDE regions. The influence of spacer width, lateral source/drain doping gradient and symmetric as well as asymmetrically designed SDE regions on key analog figures of merit (FOM) such as transconductance (g(m)), transconductance-to-current ratio (g(m)/I-ds), Early voltage (V-EA), output conductance (g(ds)) and gate capacitances are examined in detail. The present work provides new opportunities for realizing future low-voltage/low-power analog circuits with nanoscale SDE engineered DG MOSFETs. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we propose a novel design methodology for engineering source/drain extension (SDE) regions to simultaneously improve intrinsic dc gain (A(vo)) and cutoff frequency (f(T)) of 25-nm gate-length FinFETs operated at low drain-current (I-ds = 10 mu A/mu m). SDE region optimization in 25-nm FinFETs results in exceptionally high values of Avo (similar to 45 dB) and f(T) (similar to 70 GHz), which is nearly 2.5 times greater when compared to devices designed with abrupt SDE regions. The influence of spacer width, lateral source/drain doping gradient, and the spacer-to-gradient ratio on key analog figures of merit is examined in detail. This letter provides new opportunities for realizing future low-voltage/low-power analog design with nanoscale SDE-engineered FinFETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose for the first time, an analytical model for short channel effects in nanoscale source/drain extension region engineered double gate (DG) SOI MOSFETs. The impact of (i) lateral source/drain doping gradient (d), (ii) spacer width (s), (iii) spacer to doping gradient ratio (s/d) and (iv) silicon film thickness (T-si), on short channel effects - threshold voltage (V-th) and subthreshold slope (S), on-current (I-on), off-current (I-on) and I-on/I-off is extensively analysed by using the analytical model and 2D device simulations. The results of the analytical model confirm well with simulated data over the entire range of spacer widths, doping gradients and effective channel lengths. Results show that lateral source/drain doping gradient along with spacer width can not only effectively control short channel effects, thus presenting low off-current, but can also be optimised to achieve high values of on-currents. The present work provides valuable design insights in the performance of nanoscale DG Sol devices with optimal source/drain engineering and serves as a tool to optimise important device and technological parameters for 65 nm technology node and below. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By integrating systematic peptidome and transcriptome studies of the defensive skin secretion of the Central American red-eyed leaf frog, Agalychnis callidryas, we have identified novel members of three previously described antimicrobial peptide families, a 27-mer dermaseptin-related peptide (designated DRP-AC4), a 33-mer adenoregulin-related peptide (designated ARP-AC1) and most unusually, a 27-mer caerin-related peptide (designated CRP-AC1). While dermaseptin and adenoregulin were originally isolated from phyllomedusine leaf frogs, the caerins, until now. had only been described in Australian frogs of the genus, Litoria. Both the dermaseptin and adenoregulin were C-terminally amidated and lacked the C-terminal tripeptide of the biosynthetic precursor sequence. In contrast, the caerin-related peptide, unlike the majority of Litoria analogs. was not C-terminally amidated. The present data emphasize the need for structural characterization of mature peptides to ensure that unexpected precursor cleavages and/or post-translational modifications do not produce mature peptides that differ in structure to those predicted from cloned biosynthetic precursor cDNA. Additionally, systematic study of the secretory peptidome can produce unexpected results such as the CRP described here that may have phylogenetic implications. It is thus of the utmost importance in the functional evaluation of novel peptides that the primary structure of the mature peptide is unequivocally established - something that is often facilitated by cloning biosynthetic precursor cDNAs but obviously not reliable using such data alone. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions represent a unique resource for the discovery of new bioactive peptides. Here we report the isolation, structural and functional characterization of a novel heptapeptide amide, DMSPPWHamide, from the defensive skin secretion of the Mexican giant leaf frog, Pachymedusa dacnicolor. This peptide is of unique primary structure and has been classified as a member of the rather heterogenous tryptophyllin-2 (T-2) family of amphibian skin peptides and named P. dacnicolor Tryptophyllin-2 (PdT-2) in accordance. PdT-2 is the first Type 2-tryptophyllin to possess discrete bioactivity. Both natural and synthetic replicates of the peptide were found to contract the smooth muscle of rat urinary bladder, the latter displaying an EC50 of 4 nM.