54 resultados para infinite dimensional differential geometry
Resumo:
It is proved that for any separable infinite dimensional Banach space X, there is a bounded linear operator T on X such that T satisfies the Kitai criterion. The proof is based on a quasisimilarity argument and on showing that I + T satisfies the Kitai criterion for certain backward weighted shifts T.
Resumo:
Let M be the Banach space of sigma-additive complex-valued measures on an abstract measurable space. We prove that any closed, with respect to absolute continuity norm-closed, linear subspace L of M is complemented and describe the unique complement, projection onto L along which has norm 1. Using this fact we prove a decomposition theorem, which includes the Jordan decomposition theorem, the generalized Radon-Nikodym theorem and the decomposition of measures into decaying and non-decaying components as particular cases. We also prove an analog of the Jessen-Wintner purity theorem for our decompositions.
Resumo:
We provide an explicit formula which gives natural extensions of piecewise monotonic Markov maps defined on an interval of the real line. These maps are exact endomorphisms and define chaotic discrete dynamical systems.
Resumo:
We construct a bounded function $H : l_2\times l_2 \to R$ with continuous Frechet derivative such that for any $q_0\in l_2$ the Cauchy problem $\dot p= - {\partial H\over\partial q}$, $\dot q={\partial H\over\partial p}$, $p(0) = 0$, q(0) = q_0$ has no solutions in any neighborhood of zero in R.
Resumo:
An example of a sigma -compact infinite-dimensional pre-Hilbert space H is constructed such that any continuous linear operator T: H --> H is of the form T = lambdaI + F for some lambda is an element of R and for a finite-dimensional continuous linear operator F. A class of simple examples of pre-Hilbert spaces nonisomorphic to their closed hyperplanes is given. A sigma -compact pre-Hilbert space H isomorphic to H x R x R and nonisomorphic to H x R is also constructed.
Resumo:
A bounded linear operator $T$ on a Banach space $X$ is called frequently hypercyclic if there exists $x\in X$ such that the lower density of the set $\{n\in\N:T^nx\in U\}$ is positive for any non-empty open subset $U$ of $X$. Bayart and Grivaux have raised a question whether there is a frequently hypercyclic operator on any separable infinite dimensional Banach space. We prove that the spectrum of a frequently hypercyclic operator has no isolated points. It follows that there are no frequently hypercyclic operators on all complex and on some real hereditarily indecomposable Banach spaces, which provides a negative answer to the above question.
Resumo:
We give a short proof of existence of disjoint hypercyclic tuples of operators of any given length on any separable infinite dimensional Fr\'echet space. Similar argument provides disjoint dual hypercyclic tuples of operators of any length on any infinite dimensional Banach space with separable dual.
Resumo:
Let D be the differentiation operator Df = f' acting on the Fréchet space H of all entire functions in one variable with the standard (compact-open) topology. It is known since the 1950’s that the set H(D) of hypercyclic vectors for the operator D is non-empty. We treat two questions raised by Aron, Conejero, Peris and Seoane-Sepúlveda whether the set H(D) contains (up to the zero function) a non-trivial subalgebra of H or an infinite-dimensional closed linear subspace of H. In the present article both questions are answered affirmatively.
Resumo:
We construct an infinite dimensional non-unital Banach algebra $A$ and $a\in A$ such that the sets $\{za^n:z\in\C,\ n\in\N\}$ and $\{({\bf 1}+a)^na:n\in\N\}$ are both dense in $A$, where $\bf 1$ is the unity in the unitalization $A^{\#}=A\oplus \spann\{{\bf 1}\}$ of $A$. As a byproduct, we get a hypercyclic operator $T$ on a Banach space such that $T\oplus T$ is non-cyclic and $\sigma(T)=\{1\}$.
Resumo:
Chan and Shapiro showed that each (non-trivial) translation operator acting on the Fréchet space of entire functions endowed with the topology of locally uniform convergence supports a universal function of exponential type zero. We show the existence of d-universal functions of exponential type zero for arbitrary finite tuples of pairwise distinct translation operators. We also show that every separable infinite-dimensional Fréchet space supports an arbitrarily large finite and commuting disjoint mixing collection of operators. When this space is a Banach space, it supports an arbitrarily large finite disjoint mixing collection of C0-semigroups. We also provide an easy proof of the result of Salas that every infinite-dimensional Banach space supports arbitrarily large tuples of dual d-hypercyclic operators, and construct an example of a mixing Hilbert space operator T so that (T,T2) is not d-mixing.
Resumo:
The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose characteristics are investigated parametrically, focusing on the effect of superthermality of electrons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength. A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance) via a reductive perturbation method. The parametric role of superthermality, positron content, ion pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures is investigated. Following Allen and Rowlands [J. Plasma Phys. 53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to oblique perturbations, and have analytically traced the dependence of the instability growth rate on superthermality and ion pressure anisotropy.
Resumo:
We present a robust Dirichlet process for estimating survival functions from samples with right-censored data. It adopts a prior near-ignorance approach to avoid almost any assumption about the distribution of the population lifetimes, as well as the need of eliciting an infinite dimensional parameter (in case of lack of prior information), as it happens with the usual Dirichlet process prior. We show how such model can be used to derive robust inferences from right-censored lifetime data. Robustness is due to the identification of the decisions that are prior-dependent, and can be interpreted as an analysis of sensitivity with respect to the hypothetical inclusion of fictitious new samples in the data. In particular, we derive a nonparametric estimator of the survival probability and a hypothesis test about the probability that the lifetime of an individual from one population is shorter than the lifetime of an individual from another. We evaluate these ideas on simulated data and on the Australian AIDS survival dataset. The methods are publicly available through an easy-to-use R package.
Resumo:
Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε) of few-layer graphene and MoS2 is tunable by external electric fields (E ext). We show that at low fields (E ext < 0.01 V/Å) ε assumes a nearly constant value ∼4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered. All these results provide key information about control and understanding of the screening properties in two-dimensional crystals beyond graphene and MoS2
Resumo:
We say that a (countably dimensional) topological vector space X is orbital if there is T∈L(X) and a vector x∈X such that X is the linear span of the orbit {Tnx:n=0,1,…}. We say that X is strongly orbital if, additionally, x can be chosen to be a hypercyclic vector for T. Of course, X can be orbital only if the algebraic dimension of X is finite or infinite countable. We characterize orbital and strongly orbital metrizable locally convex spaces. We also show that every countably dimensional metrizable locally convex space X does not have the invariant subset property. That is, there is T∈L(X) such that every non-zero x∈X is a hypercyclic vector for T. Finally, assuming the Continuum Hypothesis, we construct a complete strongly orbital locally convex space.
As a byproduct of our constructions, we determine the number of isomorphism classes in the set of dense countably dimensional subspaces of any given separable infinite dimensional Fréchet space X. For instance, in X=ℓ2×ω, there are exactly 3 pairwise non-isomorphic (as topological vector spaces) dense countably dimensional subspaces.