Chaotic Banach algebras


Autoria(s): Shkarin, Stanislav
Data(s)

2013

Resumo

We construct an infinite dimensional non-unital Banach algebra $A$ and $a\in A$ such that the sets $\{za^n:z\in\C,\ n\in\N\}$ and $\{({\bf 1}+a)^na:n\in\N\}$ are both dense in $A$, where $\bf 1$ is the unity in the unitalization $A^{\#}=A\oplus \spann\{{\bf 1}\}$ of $A$. As a byproduct, we get a hypercyclic operator $T$ on a Banach space such that $T\oplus T$ is non-cyclic and $\sigma(T)=\{1\}$.

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/chaotic-banach-algebras(1d96308a-fad2-4bd2-9564-1c31fbec54d6).html

http://pure.qub.ac.uk/ws/files/2299290/sba3.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Shkarin , S 2013 , ' Chaotic Banach algebras ' Journal of Functional Analysis .

Tipo

article