Chaotic Banach algebras
Data(s) |
2013
|
---|---|
Resumo |
We construct an infinite dimensional non-unital Banach algebra $A$ and $a\in A$ such that the sets $\{za^n:z\in\C,\ n\in\N\}$ and $\{({\bf 1}+a)^na:n\in\N\}$ are both dense in $A$, where $\bf 1$ is the unity in the unitalization $A^{\#}=A\oplus \spann\{{\bf 1}\}$ of $A$. As a byproduct, we get a hypercyclic operator $T$ on a Banach space such that $T\oplus T$ is non-cyclic and $\sigma(T)=\{1\}$. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Fonte |
Shkarin , S 2013 , ' Chaotic Banach algebras ' Journal of Functional Analysis . |
Tipo |
article |