23 resultados para autonomous control
Resumo:
The autonomous pathway functions to promote flowering in Arabidopsis by limiting the accumulation of the floral repressor FLOWERING LOCUS C (FLC). Within this pathway FCA is a plant-specific, nuclear RNA-binding protein, which interacts with FY, a highly conserved eukaryotic polyadenylation factor. FCA and FY function to control polyadenylation site choice during processing of the FCA transcript. Null mutations in the yeast FY homologue Pfs2p are lethal. This raises the question as to whether these essential RNA processing functions are conserved in plants. Characterisation of an allelic series of fy mutations reveals that null alleles are embryo lethal. Furthermore, silencing of FY, but not FCA, is deleterious to growth in Nicotiana. The late-flowering fy alleles are hypomorphic and indicate a requirement for both intact FY WD repeats and the C-terminal domain in repression of FLC. The FY C-terminal domain binds FCA and in vitro assays demonstrate a requirement for both C-terminal FY-PPLPP repeats during this interaction. The expression domain of FY supports its roles in essential and flowering-time functions. Hence, FY may mediate both regulated and constitutive RNA 3'-end processing.
Voltage Sensing Using an Asynchronous Charge-to-Digital Converter for Energy-Autonomous Environments
Resumo:
In future systems with relatively unreliable and unpredictable energy sources such as harvesters, the system power supply may become non-deterministic. For energy effective operations, Vdd is an important parameter in any meaningful system control mechanism. Reliable and accurate on-chip voltage sensors are therefore indispensible for the power and computation management of such systems. Existing voltage sensing methods are not suitable because they usually require a stable and known reference (voltage, current, time, frequency, etc.), which is difficult to obtain in this environment. This paper describes an autonomous reference-free voltage sensor designed using an asynchronous counter powered by the charge on a capacitor and a small controller. Unlike existing methods, the voltage information is directly generated as a digital code. The sensor, fabricated in the 180 nm technology node, was tested successfully through performing measurements over the voltage range from 1.8 V down to 0.8 V.
Resumo:
The aim of this article is to combine Pettit’s account(s) of freedom, both his work on discursive control and on non-domination, with Pippin’s and Brandom’s reinterpretation of Hegelian rational agency and the role of recognition theory within it. The benefits of combining these two theories lie, as the article hopes to show, in three findings: first, re-examining Hegelian agency in the spirit of Brandom and Pippin in combination with Pettit’s views on freedom shows clearly why and in which way a Hegelian account of rational agency can ground an attractive socio-political account of freedom; second, the reconciling of discursive control and non-domination with Hegelian agency shows how the force and scope of recognition become finally tangible, without either falling into the trap of overburdening the concept, or merely reducing it to the idea of simple respect; third, the arguments from this article also highlight the importance of freedom as non-domination and how this notion is, indeed, as Pettit himself claims, an agency-freedom which aims at successfully securing the social, political, economic and even (some) psychological conditions for free and autonomous agency.