77 resultados para Threshold numbers
Resumo:
Near-threshold ionization of He has been studied by using a uniform semiclassical wavefunction for the two outgoing electrons in the final channel. The quantum mechanical transition amplitude for the direct and exchange scattering derived earlier by using the Kohn variational principle has been used to calculate the triple differential cross sections. Contributions from singlets and triplets are critically examined near the threshold for coplanar asymmetric geometry with equal energy sharing by the two outgoing electrons. It is found that in general the tripler contribution is much smaller compared to its singlet counterpart. However, at unequal scattering angles such as theta (1) = 60 degrees, theta (2) = 120 degrees the smaller peaks in the triplet contribution enhance both primary and secondary TDCS peaks. Significant improvements of the primary peak in the TDCS are obtained for the singlet results both in symmetric and asymmetric geometry indicating the need to treat the classical action variables without any approximation. Convergence of these cross sections are also achieved against the higher partial waves. Present results are compared with absolute and relative measurements of Rosel et al (1992 Phys. Rev. A 46 2539) and Selles et al (1987 J. Phys. B. At. Mel. Phys. 20 5195) respectively.
Resumo:
The continuum distorted-wave eikonal initial-state (CDW-EIS) theory of Crothers and McCann (J Phys B 1983, 16, 3229) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS to incorporate the azimuthal angle dependence of each CDW in the final-state wave function. This is accomplished by the analytic continuation of hydrogenic-like wave functions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 keVu(-1), the total ionization cross-section falls off, with decreasing energy, too quickly in comparison with experimental data. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment by including contributions from nonzero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The experimental study of molecular dissociation of H2+ by intense laser pulses is complicated by the fact that the ions are initially produced in a wide range of vibrational states, each of which responds differently to the laser field. An electrostatic storage device has been used to radiatively cool HD+ ions enabling the observation of above threshold dissociation from the ground vibrational state by 40 fs laser pulses at 800 nm. At the highest intensities used, dissociation through the absorption of at least four photons is found to be the dominant process.
Resumo:
The measured angular differential cross section (DCS) for the elastic scattering of electrons from Ar+(3s2 3p5 2P) at the collision energy of 16 eV is presented. By solving the Hartree-Fock equations, we calculate the corresponding theoretical DCS including the coupling between the orbital angular momenta and spin of the incident electron and those of the target ion and also relaxation effects. Since the collision energy is above one inelastic threshold for the transition 3s2 3p5 2P–3s 3p6 2S, we consider the effects on the DCS of inelastic absorption processes and elastic resonances. The measurements deviate significantly from the Rutherford cross section over the full angular range observed, especially in the region of a deep minimum centered at approximately 75°. Our theory and an uncoupled, unrelaxed method using a local, spherically symmetric potential by Manson [Phys. Rev. 182, 97 (1969)] both reproduce the overall shape of the measured DCS, although the coupled Hartree-Fock approach describes the depth of the minimum more accurately. The minimum is shallower in the present theory owing to our lower average value for the d-wave non-Coulomb phase shift s2, which is due to the high sensitivity of s2 to the different scattering potentials used in the two models. The present measurements and calculations therefore show the importance of including coupling and relaxation effects when accurately modeling electron-ion collisions. The phase shifts obtained by fitting to the measurements are compared with the values of Manson and the present method.
Resumo:
Rationale: Pulmonary infection in cystic ?brosis (CF) is polymicrobial and it is possible that anaerobic bacteria, not detected by routine aerobic culture methods, reside within infected anaerobic airway
mucus.
Objectives: To determine whether anaerobic bacteria are present in the sputum of patients with CF.
Methods: Sputum samples were collected from clinically stable adults with CF and bronchoalveolar lavage ?uid (BALF) samples from children with CF. Induced sputum samples were collected from healthy volunteers who did not have CF. All samples were processed using anaerobic bacteriologic techniques and bacteria within the samples were quanti?ed and identi?ed.
Measurements and Main Results: Anaerobic species primarily within the genera Prevotella,Veillonella, Propionibacterium, andActinomyces were isolated in high numbers from 42 of 66 (64%) sputum samples from adult patients with CF. Colonization with Pseudomonas aeruginosa signi?cantly increased the likelihood that anaerobic bacteria would be present in the sputum. Similar anaerobic species were identi?ed in BALF from pediatric patients with CF. Although anaerobes were detected in induced sputum samples from 16 of 20 volunteers, they were present in much lower numbers and were
generally different species compared with those detected in CF sputum. Species-dependent differences in the susceptibility of the anaerobes to antibiotics with known activity against anaerobes were apparent with all isolates susceptible to meropenem.
Conclusions: A range of anaerobic species are present in large numbers in the lungs of patients with CF. If these anaerobic bacteria are contributing signi?cantly to infection and in?ammation in the CF
lung, informed alterations to antibiotic treatment to target anaerobes, in addition to the primary infecting pathogens, may improve management.
Resumo:
PURPOSE. It has been argued that the threshold for detecting frequency-doubling (FD) technology perimeter stimuli differs from the threshold for perceiving spatial structure (pattern) in the same targets. Thresholds for perceiving spatial structure have typically been assessed using orientation-identification experiments. The authors investigated the influence of orientation, edge profile, and psychophysical method on the origin of the reported differences in detection and orientation-identification thresholds for FD gratings.
METHODS. Detection and orientation-identification thresholds were determined in 12 observers with the use of FD stimuli (0.25 cyc/deg, 25 Hz) presented centrally and at 15° eccentricity. Edge profile (square- and Gaussian-windowed) and orientation (horizontal, vertical, and oblique) were independently modified. Detection thresholds were also measured for spatially uniform flickering targets (25 Hz). Orientation-identification thresholds using a two-alternative forced choice (2-AFC) and a two-interval forced choice (2-IFC) method were also compared in five experienced observers.
RESULTS. Orientation-identification and detection thresholds did not significantly differ under any condition tested. Orientation-identification thresholds obtained with 2-AFC were not significantly different from those obtained with 2-IFC. Thresholds for spatially uniform flicker were significantly lower than for FD stimuli.
CONCLUSIONS. The authors found that orientation-identification and detection thresholds for FD gratings did not differ and argue that recent findings to the contrary arise from the inappropriate use of spatially uniform flicker targets as alternatives in 2-IFC experiments.