81 resultados para RIBOSOMAL-RNA
Resumo:
Lights, camera, action! Photoswitchable nucleoside analogues containing o-, m-, or p-azobenzenes can be inserted in the catalytic core of RNA-cleaving 10-23 deoxyribozymes by replacing a nonconserved residue (see picture). Irradiation of the modified deoxyribozymes at 366 nm enhances RNA cleavage rates up to ninefold, thus achieving the rates observed for the unmodified deoxyribozyme.
Resumo:
Negative-strand RNA viruses encode a single RNA-dependent RNA polymerase (RdRp) which transcribes and replicates the genome. The open reading frame encoding the RdRp from a virulent wild-type strain of rinderpest virus (RPV) was inserted into an expression plasmid. Sequences encoding enhanced green fluorescent protein (EGFP) were inserted into a variable hinge of the RdRp. The resulting polymerase was autofluorescent, and its activity in the replication/transcription of a synthetic minigenome was reduced. We investigated the potential of using this approach to rationally attenuate a virus by inserting the DNA sequences encoding the modified RdRp into a full-length anti-genome plasmid from which a virulent virus (rRPV(KO)) can be rescued. A recombinant virus, rRPV(KO)L-RRegfpR, which grew at an indistinguishable rate and to an identical titer as rRPV(KO) in vitro, was rescued. Fluorescently tagged polymerase was visible in large cytoplasmic inclusions and beneath the cell membrane. Subcutaneous injection of 10(4) TCID(50) of the rRPV(KO) parental recombinant virus into cattle leads to severe disease symptoms (leukopenia/diarrhea and pyrexia) and death by 9 days postinfection. Animals infected with rRPV(KO)L-RRegfpR exhibited transient leukopenia and mild pyrexia, and the only noticeable clinical signs were moderate reddening of one eye and a slight ocular-nasal discharge. Viruses that expressed the modified polymerase were isolated from peripheral blood lymphocytes and eye swabs. This demonstrates that a virulent morbillivirus can be attenuated in a single step solely by modulating RdRp activity and that there is not necessarily a correlation between virus growth in vitro and in vivo.
Resumo:
We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.
Resumo:
Replication of the giant RNA genome of severe acute respiratory syndrome (SARS) coronavirus (CoV) and synthesis of as many as eight subgenomic (sg) mRNAs are mediated by a viral replicase-transcriptase of outstanding complexity that includes an essential endoribonuclease activity. Here, we show that the CoV replicative machinery, unlike that of other RNA viruses, also uses an exoribonuclease (ExoN) activity, which is associated with nonstructural protein (nsp) 14. Bacterially expressed forms of SARS-CoV nsp14 were shown to act on both ssRNAs and dsRNAs in a 3'5' direction. The activity depended on residues that are conserved in the DEDD exonuclease superfamily. The protein did not hydrolyze DNA or ribose-2'-O-methylated RNA substrates and required divalent metal ions for activity. A range of 5'-labeled ssRNA substrates were processed to final products of 8–12 nucleotides. When part of dsRNA or in the presence of nonlabeled dsRNA, the 5'-labeled RNA substrates were processed to significantly smaller products, indicating that binding to dsRNA in cis or trans modulates the exonucleolytic activity of nsp14. Characterization of human CoV 229E ExoN active-site mutants revealed severe defects in viral RNA synthesis, and no viable virus could be recovered. Besides strongly reduced genome replication, specific defects in sg RNA synthesis, such as aberrant sizes of specific sg RNAs and changes in the molar ratios between individual sg RNA species, were observed. Taken together, the study identifies an RNA virus ExoN activity that is involved in the synthesis of multiple RNAs from the exceptionally large genomic RNA templates of CoVs.
Resumo:
Key tenets of modern biology are the central place of protein in cell regulation and the flow of genetic information from DNA to RNA to protein. However, it is becoming increasingly apparent that genomes are much more complex than hitherto thought with remarkably complex regulatory systems. The notion that the fraction of the genome involved in coding protein is all that matters is increasingly being questioned as the roles of non-coding RNA (ncRNA) in cellular systems becomes recognised. The RNA world, including microRNA (miRNA), small inhibitory RNA (siRNA) and other RNA species, are now recognised as being crucial for the regulation of chromatin structure, gene expression, mRNA processing and splicing, mRNA stability and translational control. Furthermore such ncRNA systems may be perturbed in disease states and most notably in neoplasia, including in haematological malignancies. Here the burgeoning evidence for a role of miRNA in neoplasia is reviewed and the importance of understanding the RNA world emphasised. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
The human coronavirus 229E (HCoV-229E) replicase gene-encoded nonstructural protein 13 (nsp13) contains an N-terminal zinc-binding domain and a C-terminal superfamily 1 helicase domain. A histidine-tagged form of nsp13, which was expressed in insect cells and purified, is reported to unwind efficiently both partial-duplex RNA and DNA of up to several hundred base pairs. Characterization of the nsp13-associated nucleoside triphosphatase (NTPase) activities revealed that all natural ribonucleotides and nucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed most efficiently. Using the NTPase active site, HCoV-229E nsp13 also mediates RNA 5'-triphosphatase activity, which may be involved in the capping of viral RNAs.