55 resultados para New materials
Resumo:
Conducting polymers suffer from folds and kinks because of random nucleation and solvation of a free radical cation to yield a cross linked/disordered polymer and therefore a solvent free electrochemical polymerization in a room temperature melt medium is adopted to yield a high degree polymer with high electronic conductivity. Electropolymerization of thiophene was performed on platinum/ITO substrates using cyclic voltametry or galvenostatic mode in chloroaluminate room temperature melt medium to obtain a reddish brown free standing film which can be peeled off from the electrode surface after a minimum of 10 cycles. The conductivity was found to be around 102 S/cm. The degree of polymerization was calculated to be around 44 from IR studies. A layered structure supportive for high degree of polymerization was witnessed from potential step technique. From UV spectra the charge carriers were found to be bipolarons. The morphology of the film was found to be crystalline from SEM and XRD studies. Capacitative impedance properties for doped samples were interpreted from impedance spectroscopy.
Resumo:
This paper shows that penetration of the applied electric field into the electrodes of a ferroelectric thin film capacitor produces both an interfacial capacitance and an effective mechanism for electron tunneling. The model predictions are compared with experimental results on Au-BST-SrRuO3 capacitors of varying thicknesses, and the agreement is excellent.
Resumo:
Toluene dioxygenase-catalysed cis-dihydroxylation of phenols has led to the discovery of new enantiopure cyclohexenone cis-diol, o-quinol dimer and phenol hydrate metabolites having synthetic potential.
Resumo:
A dynamic mathematical model for simulating the coupled heat and moisture migration through multilayer porous building materials was proposed. Vapor content and temperature were chosen as the principal driving potentials. The discretization of the governing equations was done by the finite difference approach. A new experimental set-up was also developed in this study. The evolution of transient temperature and moisture distributions inside specimens were measured. The method for determining the temperature gradient coefficient was also presented. The moisture diffusion coefficient, temperature gradient coefficient, sorption–desorption isotherms were experimentally evaluated for some building materials (sandstone and lime-cement mortar). The model was validated by comparing with the experimental data with good agreement. Another advantage of the method lies in the fact that the required transport properties for predicting the non-isothermal moisture flow only contain the vapor diffusion coefficient and temperature gradient coefficient. They are relatively simple, and can be easily determined.
Resumo:
A mathematical model for calculating the nonisothermal moisture transfer in building materials is presented in the article. The coupled heat and moisture transfer problem was modeled. Vapor content and temperature were chosen as principal driving potentials. The coupled equations were solved by an analytical method, which consists of applying the Laplace transform technique and the Transfer Function Method. A new experimental methodology for determining the temperature gradient coefficient for building materials was also proposed. Both the moisture diffusion coefficient and the temperature gradient coefficient for building material were experimentally evaluated. Using the measured moisture transport coefficients, the temperature and vapor content distribution inside building materials were predicted by the new model. The results were compared with experimental data. A good agreement was obtained.
Resumo:
Anionic and cationic alkyl-chain effects on the self-aggregation of both neat and aqueous solutions of 1-alkyl-3-methylimidazolium alkylsulfonate salts ([C(n)H(2n+ 1)mim][CmH2m+1SO3]; n = 8, 10 or 12; m = 1 and n = 4 or 8; m = 4 or 8) have been investigated. Some of these salts constitute a novel family of pure catanionic surfactants in aqueous solution. Examples of this class of materials are rare; they are distinct from both mixed cationic-anionic surfactants (obtained by mixing two salts) and gemini surfactants (with two or more amphiphilic groups bound by a covalent linker). Fluorescence spectroscopy and interfacial tension measurements have been used to determine critical micelle concentrations (CMCs), surface activity, and to compare the effects of the alkyl-substitution patterns in both the cation and anion on the surfactant properties of these salts. With relatively small methylsulfonate anions (n = 8, 10 and 12, m = 1), the salts behave as conventional single chain cationic surfactants, showing a decrease of the CMC upon increase of the alkyl chain length (n) in the cation. When the amphiphilic character is present in both the cation and anion (n = 4 and 8, m = 4 and 8), novel catanionic surfactants with CMC values lower than those of the corresponding cationic analogues, and which exhibited an unanticipated enhanced reduction of surface tension, were obtained. In addition, the thermotropic phase behaviour of [C(8)H(18)mim][C8H18SO3] (n = m = 8) was investigated using variable temperature X-ray scattering, polarising optical microscopy and differential scanning calorimetry; formation of a smectic liquid crystalline phase with a broad temperature range was observed.
Resumo:
Ammonium chloride/mercuric chloride mixtures (molar ratio 2: 1) react at 350degreesC with Monel (Cu68Ni32) to yield (NH4)NiCl3 and mercury and copper amalgam, respectively. With larger amounts of (NH4)Cl in the reaction mixture, dark green (NH4)(2)(NH3)(x)[Ni(NH3)(2)Cl-4] (x approximate to 0.77) (1) is also formed as a main product. Light blue crystals of the mixed-valent copper(I,II) chloride (NH4)(5)Cl-5[CuCl2][CuCl4] (2) were obtained as a minor byproduct from a 4:1 reaction mixture. The crystal structures were determined from single crystal X-ray data; (1): tetragonal, I4/mmm, a = 770.9(1), e = 794.2(2) pm, 190 reflections, R-1 = 0.0263; (2): tetragonal, I4/mcm, a = 874.8(1), c = 2329.2(3) pm, 451 reflections, R-1 = 0.0736. In (1) Ni2+ resides in trans-[Ni(NH3)(2)Cl-4](2-) octahedra, and in (2) copper(l) is linearly two-coordinated in ECUC121- and copper(II) resides in a flattened tetrahedron [CuCl4](2-) with a tetrahedricity of 89%. (C) 2001 Elsevier Science.
Resumo:
Decomposition of methyl 2-diazophenylacetate in the presence of silanes and a chiral dirhodium(11) catalyst results in Si-H insertion of the intermediate carbenoid with varying degrees of enantioselectivity. New chiral dirhodium(11) carboxylate catalysts were identified using solution phase parallel synthesis techniques. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Herein we describe our asymmetric total syntheses of (+)-A83586C, (+)-kettapeptin and (+)-azinothricin. We also demonstrate that molecules of this class powerfully inhibit beta-catenin/TCF4- and E2F-mediated gene transcription within malignant human colon cancer cells at low drug concentrations.
Resumo:
The increasing risks and costs of new product development require firms to collaborate with their supply chain partners in product management. In this paper, a supply chain model is proposed with one risk-neutral supplier and one risk-averse manufacturer. The manufacturer has an opportunity to enhance demand by developing a new product, but both the actual demand for new product and the supplier’s wholesale price are uncertain. The supplier has an incentive to share risks of new product development via an advance commitment to wholesale price for its own profit maximization. The effects of the manufacturer’s risk sensitivity on the players’ optimal strategies are analyzed and the trade-off between innovation incentives and pricing flexibility is investigated from the perspective of the supplier. The results highlight the significant role of risk sensitivity in collaborative new product development, and it is found that the manufacturer’s innovation level and retail price are always decreasing in the risk sensitivity, and the supplier prefers commitment to wholesale price only when the risk sensitivity is below a certain threshold.
Resumo:
New ionic liquids based on azepanium and 3- methylpiperidinium cations have been synthesised; they exhibit moderate viscosities and remarkably wide electrochemical windows, thereby showing promise, inter alia, as electrolytes and battery materials, and as synthetic media.
Resumo:
We report a novel class of biaryl polyamides highly selective for G-quadruplex DNA, and with significant cytotoxicity in several cancer cell lines; they form planar U-shaped structures that match the surface area dimensions of a terminal G-quartet in quadruplex structures rather than the grooves of duplex DNA.
Resumo:
The biophysical and biological properties of unprecedented anti-HIV aptamers are presented. The most active aptamer (1L) shows a significant affinity to the HIV protein gp120.