45 resultados para Highly Crystalline Polyaniline Films Novel Hybrid Polymers as Emissive Layers
Resumo:
Natural mineral-water interface reactions drive ecosystem/global fluoride (F−) cycling. These small-scale processes prove challenging to monitoring due to mobilization being highly localized and variable; influenced by changing climate, hydrology, dissolution chemistries and pedogenosis. These release events could be captured in situ by the passive sampling technique, diffusive gradients in thin-films (DGT), providing a cost-effective and time-integrated measurement of F− mobilization. However, attempts to develop the method for F− have been unsuccessful due to the very restrictive operational ranges that most F−-absorbents function within. A new hybrid-DGT technique for F− quantification containing a three-phase fine particle composite (Fesingle bondAlsingle bondCe, FAC) adsorbent was developed and evaluated. Sampler response was validated in laboratory and field deployments, passing solution chemistry QC within ionic strength and pH ranges of 0–200 mmol L−1 and 4.3–9.1, respectively, and exhibiting high sorption capacities (98 ± 8 μg cm−2). FAC-DGT measurements adequately predicted up to weeklong averaged in situ F− fluvial fluxes in a freshwater river and F− concentrations in a wastewater treatment flume determined by high frequency active sampling. While, millimetre-scale diffusive fluxes across the sediment-water interface were modeled for three contrasting lake bed sediments from a F−-enriched lake using the new FAC-DGT platform.
Resumo:
[M2L3] coordination cages and linear [M2L3]infinity polymers of the rigid, bridging diphosphines bis(diphenylphosphino)acetylene (dppa) and trans-1,2-bis(diphenylphosphino)ethylene (dppet) with silver(I) salts have been investigated in the solution and solid states. Unlike flexible diphosphines, 1:1 dppa/AgX mixtures do not selectively form discrete [Ag2(diphos)2(X)2] macrocycles; instead dynamic mixtures of one-, two- and three-coordinate complexes are formed. However, 3:2 dppa/AgX ratios (X = SbF6. BF4, O3SCF3 or NO3) do lead selectively to new [M2L3] triply bridged cage complexes [Ag2(dppa)3(X)2] 1a-d (X = SbF6 a, BF4 b, O3SCF3 c, NO3 d), which do not exhibit Ag-P bond dissociation at room temperature on the NMR time scale (121 MHz). Complexes la-d were characterised by X-ray crystallography and were found to have small internal cavities, helical conformations and multiple intramolecular aromatic interactions. The nucleophilicity of the anion subtly influences the cage shape: Increasing nucleophilicity from SbF6 (1a) through BF4 (1b) and O3SCF3 (1c) to NO3 (1d) increases the pyramidal distortion at the AgP3 centres, stretching the cage framework (with Ag...Ag distances increasing from 5.48 in 1a to 6.21 A in 1d) and giving thinner internal cavities. Crystal packing strongly affected the size of the helical twist angle, and no correlation between this parameter and the Ag-Ag distance was observed. When crystalline 1c was stored in its supernatant for 16 weeks, conversion occured to the isostoichiometric [M2L3]infinity coordination polymer [Ag(dppa)2Ag(dppa)(O3SCF3)2]infinity (1c'). X-ray crystallography revealed a structure with ten-membered Ag2(dppa)2 rings linked into infinite one-dimensional chains by a third dppa unit. The clear structural relationship between this polymer and the precursor cage 1c suggests a novel example of ring-opening polymerisation. With dppet, evidence for discrete [M2L3] cages was also found in solution, although 31P NMR spectroscopy suggested some Ag-P bond dissociation. On crystallisation, only the corresponding ring-opened polymeric structures [M2L3]infinity could be obtained. This may be because the greater steric bulk of dppet versus dppa destabilises the cage and favours the ring-opening polymerisation.
Resumo:
Poly(methyl vinyl ether-co-maleic anhydride) formed films from aqueous formulations with characteristics that are ideal as a basis for producing a drug-containing bioadhesive delivery system when plasticized with a monohydroxyl functionalized plasticizer. Hence, films containing a novel plasticizer, tripropylene glycol methyl ether (TPME), maintained their adhesive strength and tensile properties when packaged in aluminized foil for extended periods of time. Films plasticized with commonly used polyhydric alcohols, such as the glycerol in this study, underwent an esterification reaction that led to polymer crosslinking, as shown in NMR studies. These revealed the presence of peaks in the ester/carbonyl region, suggesting that glyceride residue formation had been initiated. Given the polyfunctional nature of glycerol, progressive esterification would result in a polyester network and an accompanying profound alteration in the physical characteristics. Indeed, films became brittle over time with a loss of both the aqueous solubility and bioadhesion to porcine skin. In addition, a swelling index was measurable after 7 days, a property not seen with those films containing TPME. This change in bioadhesive strength and pliability was independent of the packaging conditions, rendering the films that contain glycerol as unsuitable as a basis for topical bioadhesive delivery of drug substances. Consequently, films containing TPME have potential as an alternative formulation strategy.
Resumo:
Several novel phosphoramidites have been prepared by reaction of the primary amines para-vinylaniline, ortho-anisidine, 2-methoxyphenyl(4-vinylbenzyl)amine, 8-aminoquinoline and 3-vinyl-8-aminoquinoline with (S)-1,1'-bi-2-naphthylchlorophosphite, in the presence of base. Rhodium(l) complexes of these phosphoramidites catalyse the asymmetric hydrogenation of dimethylitaconate and dehydroamino acids and esters giving ee values up to 95%. Soluble non-cross linked polymers of the para-vinylaniline and 3-vinyl-8-aminoquinoline-based phosphoramidites have been prepared by free radical co-polymerisation with styrene in the presence of AIBN as initiator. The corresponding [Rh(COD)](+) complexes serve as recyclable catalysts for the asymmetric hydrogenation dimethylitaconate and dehydroamino acids and esters to give ee values up to 80%. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Derivative spectroscopy has been utilised for the determination of amphotericin in various biological matrices including plasma, serum, urine and brain tissue. Whilst these methods have all been shown to be suitable for the determination of the drug in these matrices it has been reported that the application fails in the case of highly icteric plasma, this being due to the presence of high concentrations (>50 mu M) of bilirubin. This paper details the application of ratio spectra derivative spectroscopy to overcome the interference of bilirubin with amphotericin in such situations.
Resumo:
Reaction of trans-[Pt(NC5H4CHBu2n)(2)Cl-2] 1 with an excess of HC=CR (R = Ph, C6H4Me, C6H4NO2) affords the monomeric complex trans-[Pt(NC5H4CHBu2n)(2)(C=CR)(2)] (R = Ph 2a, C6H4Me 2b, C6H4NO2 2c), the trans arrangement of the alkynyl ligands being confirmed from spectroscopic data and by an X-ray analysis of 2c;when 1 is treated with 1 equiv, of HC=CC6H2(Me)(2)C=CH the polymer [Pt(NC5H4CHBu2n)(2)C=CC6H2Me2C=C](n) is formed, which is soluble in a range of organic solvents.
Resumo:
Robust, active, anatase titania films, 250 nm thick, are deposited onto glass at low temperatures, i.e., 2.0 for the photocatalytic mineralization of stearic acid. These films are typically 6.9 times more active than a sample of commercial self-cleaning glass, comprising a 15 nm layer of fitania deposited by CVD, mainly because they are much thicker and, therefore, absorb more of the incident UV light. The most active of the films tested comprised particles of P25, but lacked any significant physical robustness. Similar results, but much more quickly obtained, were generated using a photocatalyst- sensitive ink, based on the redox dye, resazurin, Rz. All fitania films tested, including those produced by magnetrom sputtering exhibited photo-induced superhydrophilicity. The possible future application of PAR-DG-MS for producing very active photocatalytic films on substrates not renowned for their high temperature stabilities, such as plastics, is noted. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
Novel Ag on TiO2 films are generated by semiconductor photocatalysis and characterized by ultraviolet-visible (UV/Vis) spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM), as well as assessed for surface-enhanced Raman scattering (SERS) activity. The nature and thickness of the photodeposited Ag, and thus the degree of SERS activity, is controlled by the time of exposure of the TiO2 film to UV light. All such films exhibit the optical characteristics (λmax ≅ 390 nm) of small (<20 nm) Ag particles, although this feature becomes less prominent as the film becomes thicker. The films comprise quite large (>40 nm) Ag islands that grow and merge with increasing levels of Ag photodeposition. Tested with a benzotriazole dye probe, the films are SERS active, exhibiting activity similar to that of 6-nm-thick vapordeposited films. The Ag/TiO2 films exhibit a lower residual standard deviation (∼25%) compared with Ag vapor-deposited films (∼45%), which is, however, still unacceptable for quantitative work. The sample-to-sample variance could be reduced significantly (<7%) by spinning the film during the SERS measurement. The Ag/TiO2 films are mechanically robust and resistant to removal and damage by scratching, unlike the Ag vapor-deposited films. The Ag/TiO2 films also exhibit no obvious loss of SERS activity when stored in the dark under otherwise ambient conditions. The possible extension of this simple, effective method of producing Ag films for SERS, to metals other than Ag and to semiconductors other than TiO2, is briefly discussed.
Resumo:
A novel route involving atmospheric pressure chemical vapour deposition (APCVD) is reported for coating Nb2O5 onto glass substrates via the reaction of NbCl5 and ethyl acetate at 400-660degreesC. Raman spectroscopy is shown to be a simple diagnostic tool for the analysis of these thin films. The contact angle of water on Nb2O5-coated glass drops on UV irradiation from 60degrees to 5-20degrees. XPS Analysis showed that the Nb:O ratio of the film was 1:2.5. Glancing angle X-ray diffraction showed that all films were crystalline, with only a single phase being observed; this has some preferred orientation in the (201) plane of Nb2O5. The niobium(V) oxide materials show minimal photocatalytic ability to degrade organic material.
Resumo:
A novel CVD film of titanium(IV) oxide has been prepared on glass, via the reaction of titanium(IV) chloride and ethyl acetate, using a CVD technique. The film is clear, very robust mechanically and comprised of a thin (24 nm) layer of nanocrystalline anatase titania that absorbs light of lambda
Resumo:
Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.