124 resultados para High throughput


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we disclose the synthesis and SAR of a series of 4-(phenylsulfamoyl)phenylacetamide compounds as mGlu(4) positive allosteric modulators (PAMs) that were identified via a functional HTS. An iterative parallel approach to these compounds culminated in the discovery of VU0364439 (11) which represents the most potent (19.8 nM) mGlu(4) PAM reported to date. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiplexed immunochemical detection platforms offer the potential to decrease labour demands, increase sample throughput and decrease overall time to result. A prototype four channel multiplexed high throughput surface plasmon resonance biosensor was previously developed, for the detection of food related contaminants. A study focused on determining the instruments performance characteristics was undertaken. This was followed by the development of a multiplexed assay for four high molecular weight proteins. The protein levels were simultaneously evaluated in serum samples of 10-week-old veal calves (n = 24) using multiple sample preparation methods. Each of the biosensor's four channels were shown to be independent of one another and produced multiplexed within run repeatability (n = 6) ranging from 2.0 to 6.7%CV, for the four tested proteins, whilst between run reproducibility (n = 4) ranged from 1.5 to 8.9%CV. Four calibration curves were successfully constructed before serum sample preparation was optimised for each protein. Multiplexed concentration analysis was successfully performed on four channels revealing that each proteins concentration was consistent across the twenty-four tested animals. Signal reproducibility (n > 19) on a further long term study revealed coefficient of variation ranging from 1.1% to 7.3% and showed that the multiplexed assay was stable for at least 480 cycles. These findings indicate that the performance characteristics fall within the range of previously published data for singleplex optical biosensors and that the multiplexing biosensor is fit-for-purpose for simultaneous concentration analysis in many different types of applications such as the multiplexed detection of markers of growth-promoter abuse and multiplexed detection of residues of concern in food safety. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flexible panel consisting of 38 informative microsatellite markers for Salmo trutta is described. These markers were selected from a pool of over 150 candidate loci that can be readily amplified in four multiplex PCR groups but other permutations are also possible. The basic properties of each markers were assessed in six population samples from both the Burrishoole catchment, in the west of Ireland, and Lough Neagh, in Northern Ireland. A method to assess the relative utility of individual markers for the detection of population genetic structuring is also described. Given its flexibility, technical reliability and high degree of informativeness, the use of this panel of markers is advocated as a standard for S. trutta genetic studies. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shared strains of Pseudomonas aeruginosa are now well recognized in people with cystic fibrosis (CF), and suitable P. aeruginosa laboratory typing tools are pivotal to understanding their clinical significance and guiding infection control policies in CF clinics. We therefore compared a single-nucleotide polymorphism (SNP)-based typing method using Sequenom iPLEX matrix-assisted laser desorption ionization with time-of-flight mass spectrometry (MALDI-TOF MS) with typing methods used routinely by our laboratory. We analysed 617 P. aeruginosa isolates that included 561 isolates from CF patients collected between 2001 and 2009 in two Brisbane CF clinics and typed previously by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as 56 isolates from non-CF patients analysed previously by multilocus sequence typing (MLST). The isolates were tested using a P. aeruginosa Sequenom iPLEX MALDI-TOF (PA iPLEX) method comprising two multiplex reactions, a 13-plex and an 8-plex, to characterize 20 SNPs from the P. aeruginosa housekeeping genes acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. These 20 SNPs were employed previously in a real-time format involving 20 separate assays in our laboratory. The SNP analysis revealed 121 different SNP profiles for the 561 CF isolates. Overall, there was at least 96% agreement between the ERIC-PCR and SNP analyses for all predominant shared strains among patients attending our CF clinics: AUST-01, AUST-02 and AUST-06. For the less frequently encountered shared strain AUST-07, 6/25 (24%) ERIC-PCR profiles were misidentified initially as AUST-02 or as unique, illustrating the difficulty of gel-based analyses. SNP results for the 56 non-CF isolates were consistent with previous MLST data. Thus, the PA iPLEX format provides an attractive high-throughput alternative to ERIC-PCR for large-scale investigations of shared P. aeruginosa strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present the case study of the European hake (Merluccius merluccius), one of the most important demersal resources of European fisheries. Two sequencing platforms, the Roche 454 FLX (454) and the Illumina Genome Analyzer (GAII), were used for Single Nucleotide Polymorphisms (SNPs) discovery in the hake muscle transcriptome. De novo transcriptome assembly into unique contigs, annotation, and in silico SNP detection were carried out in parallel for 454 and GAII sequence data. High-throughput genotyping using the Illumina GoldenGate assay was performed for validating 1,536 putative SNPs. Validation results were analysed to compare the performances of 454 and GAII methods and to evaluate the role of several variables (e.g. sequencing depth, intron-exon structure, sequence quality and annotation). Despite well-known differences in sequence length and throughput, the two approaches showed similar assay conversion rates (approximately 43%) and percentages of polymorphic loci (67.5% and 63.3% for GAII and 454, respectively). Both NGS platforms therefore demonstrated to be suitable for large scale identification of SNPs in transcribed regions of non-model species, although the lack of a reference genome profoundly affects the genotyping success rate. The overall efficiency, however, can be improved using strict quality and filtering criteria for SNP selection (sequence quality, intron-exon structure, target region score).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings show that the immunobead array method was capable of detecting as low as 1 CFU of the pathogens spiked in the culture media after being cultured for 24 hours for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1 CFU of the pathogens spiked in the food samples after being cultured for 24 hours in the case of Salmonella spp., and L. monocytogenes and 48 hours in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 hours, whereas the conventional ISO protocols for the same pathogens take 90-144 hours. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An area-efficient high-throughput architecture based on distributed arithmetic is proposed for 3D discrete wavelet transform (DWT). The 3D DWT processor was designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The processor runs up to 85 MHz, which can process the five-level DWT analysis of a 128 x 128 x 128 fMRI volume image in 20 ms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND:
tissue MicroArrays (TMAs) are a valuable platform for tissue based translational research and the discovery of tissue biomarkers. The digitised TMA slides or TMA Virtual Slides, are ultra-large digital images, and can contain several hundred samples. The processing of such slides is time-consuming, bottlenecking a potentially high throughput platform.
METHODS:
a High Performance Computing (HPC) platform for the rapid analysis of TMA virtual slides is presented in this study. Using an HP high performance cluster and a centralised dynamic load balancing approach, the simultaneous analysis of multiple tissue-cores were established. This was evaluated on Non-Small Cell Lung Cancer TMAs for complex analysis of tissue pattern and immunohistochemical positivity.
RESULTS:
the automated processing of a single TMA virtual slide containing 230 patient samples can be significantly speeded up by a factor of circa 22, bringing the analysis time to one minute. Over 90 TMAs could also be analysed simultaneously, speeding up multiplex biomarker experiments enormously.
CONCLUSIONS:
the methodologies developed in this paper provide for the first time a genuine high throughput analysis platform for TMA biomarker discovery that will significantly enhance the reliability and speed for biomarker research. This will have widespread implications in translational tissue based research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A full hardware implementation of a Weighted Fair Queuing (WFQ) packet scheduler is proposed. The circuit architecture presented has been implemented using Altera Stratix II FPGA technology, utilizing RLDII and QDRII memory components. The circuit can provide fine granularity Quality of Service (QoS) support at a line throughput rate of 12.8Gb/s in its current implementation. The authors suggest that, due to the flexible and scalable modular circuit design approach used, the current circuit architecture can be targeted for a full ASIC implementation to deliver 50 Gb/s throughput. The circuit itself comprises three main components; a WFQ algorithm computation circuit, a tag/time-stamp sort and retrieval circuit, and a high throughput shared buffer. The circuit targets the support of emerging wireline and wireless network nodes that focus on Service Level Agreements (SLA's) and Quality of Experience.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel bit level systolic array is presented that can be used as a building block in the construction of recursive digital filters. The circuit accepts bit-parallel input data, is pipelined at the bit level, and exhibits a very high throughput rate. The most important feature of the circuit is that it allows recursive operations to be implemented directly without incurring the large m cycle latency (where m is approximately the word length) normally associated with such systems. The use of this circuit in the construction of both first- and second-order IIR (infinite-impulse-response) filters is described.