61 resultados para Heat and Mass Transfer
Resumo:
This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.
Resumo:
A detailed theoretical analysis has been carried out to study efficient heating due to microwaves for one-dimensional (1D) oil–water emulsion samples placed on various ceramic, metallic (reflective) and ceramic–metallic composite supports. Two typical emulsion systems are considered such as oil-in-water (o/w) and water-in-oil (w/o). A preliminary study has been carried out via average power vs emulsion thickness diagram to estimate microwave power absorption within emulsion samples for various cases. The maxima in average power, also termed as ‘resonances’, are observed for specific emulsion thicknesses and the two consecutive resonances of significant magnitudes are termed as R1 and R2 modes. For both o/w and w/o emulsions, it is observed that microwave power absorption is enhanced in presence of metallic and composite supports during both R1 and R2 modes. The efficient heating strategies characterized by ‘large heating rates’ with ‘minimal thermal runaway’ i.e. uniform temperature distributions within the sample have been assessed for each type of emulsion. Based on the detailed spatial distributions of power and temperature for various cases, SiC-metallic composite support may be recommended as an optimal heating strategy for o/w samples with higher oil fractions (0.45) whereas metallic and Alumina-metallic composite supports may be favored for samples with smaller oil fractions (=0.3) during R1 mode. For w/o samples, SiC-metallic composite support may be suitable heating strategy for all ranges of water fractions during R1 mode. During R2 mode, metallic and Alumina-metallic composite supports are favored for both o/w and w/o emulsion samples. Current study recommends the efficient way to use microwaves in a single mode waveguide and the heating strategy can be suitably extended for heating of any other emulsions for which dielectric properties are easily measurable or available in the literature.
Resumo:
The selective heterogeneous catalytic reduction of phenyl acetylene to styrene over palladium supported on calcium carbonate is reported in both an ionic liquid and a molecular solvent. By using a rotating disc reactor in conjunction with results from a stirred tank reactor it is possible, for the first time, to disentangle the mass transfer contributions in the ionic liquid system. For both heptane and 1-butyl-3-methyl imidazolium bis{(trifluoromethyl)sulfonyl}imide, the reaction in the rotating disc reactor is dominated by reaction in the entrained film on the disc compared with very limited reaction in the bulk liquid. The lower reaction rate obtained in the ionic liquid compared with the organic solvent is shown to be due to the slow transport of the hydrogen dissolved in the liquid. It is clear from the results presented herein that, although the hydrodynamics of similar reactors used for biological treatment of wastewater are well understood, on using a more viscous fluid and higher rotation speeds necessary for fine chemical catalysis these simple relationships breakdown.
Resumo:
Colloidal gas aphrons (CGAs) are micron-sized bubbles, which are produced by stirring a dilute surfactant solution at a high speed. In this work, CGAs have been used to clarify oily wastewater by flotation technique. The CGAs sparging rate was a critical factor that governed the efficiency of the process. A model for the determination of the mass transfer coefficient is also developed for the purpose of process design.
Resumo:
Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga & Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.