3 resultados para Heat and Mass Transfer

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.

Part II

Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.

Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.

Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass transfer from wetted surfaces on one-inch cylinders with unwetted approach sections was studied experimentally by means of the evaporation of n-octane and n-heptane into an air stream in axisymmetrical flow, for Reynolds numbers from 5,000 to 310,000. A transition from the laminar to the turbulent boundary layer was observed to occur at Reynolds numbers from 10,000 to 15,000. The results were expressed in terms of the Sherwood number as a function of the Reynolds number, the Schmidt number, and the ratio of the unwetted approach length to the total length. Empirical formulas were obtained for both laminar and turbulent regimes. The rates of mass transfer obtained were higher than theoretical and experimental results obtained by previous investigators for mass and heat transfer from flat plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the pH and temperature dependence of the redox potentials of azurins from five species of bacteria has been performed. The variations in the potentials with pH have been interpreted in terms of electrostatic interactions between the copper site and titrating histidine residues, including the effects of substitutions in the amino acid sequences of the proteins on the electrostatic interactions. A comparison of the observed pH dependences with predictions based on histidine pK_a values known for Pseudomonas aeruginosa (Pae), Alcaligenes denitrificans (Ade), and Alcaligenes faecalis (Afa) azurins indicates that the Pae and Ade redox potentials exhibit pH dependences in line with electrostatic arguments, while Afa azurin exhibits more complex behavior. Redox enthalpies and entropies for four of the azurins at low and high pH values have also been obtained. Based on these results in conjuction with the variable pH experiments, it appears that Bordetella bronchiseptica azurin may undergo a more substantial conformational change with pH than has been observed for other species of azurin.

The temperature dependence of the redox potential of bovine erythrocyte superoxide dismutase (SOD) has been determined at pH 7.0, with potassium ferricyanide as the mediator. The following thermodynamic parameters have been obtained (T = 25°C): E°' = 403±5 mV vs. NHE, ΔG°' = -9.31 kcal/mol, ΔH°' = -21.4 kcal/mol, ΔS°' = -40.7 eu, ΔS°'_(rc) = -25.1 eu. It is apparent from these results that ΔH°', rather than ΔS°', is the dominant factor in establishing the high redox potential of SOD. The large negative enthalpy of reduction may also reflect the factors which give SOD its high specificity toward reduction and oxidation by superoxide.