32 resultados para Fuzzy Control


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to address the increasing compromise of user privacy on mobile devices, a Fuzzy Logic based implicit authentication scheme is proposed in this paper. The proposed scheme computes an aggregate score based on selected features and a threshold in real-time based on current and historic data depicting user routine. The tuned fuzzy system is then applied to the aggregated score and the threshold to determine the trust level of the current user. The proposed fuzzy-integrated implicit authentication scheme is designed to: operate adaptively and completely in the background, require minimal training period, enable high system accuracy while provide timely detection of abnormal activity. In this paper, we explore Fuzzy Logic based authentication in depth. Gaussian and triangle-based membership functions are investigated and compared using real data over several weeks from different Android phone users. The presented results show that our proposed Fuzzy Logic approach is a highly effective, and viable scheme for lightweight real-time implicit authentication on mobile devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A well-cited paper suggesting fuzzy coding as an alternative to the conventional binary, grey and floating-point representations used in genetic algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new universal power quality manager is proposed. The proposal treats a number of power quality problems simultaneously. The universal manager comprises a combined series and shunt three-phase PWM controlled converters sharing a common DC link. A control scheme based on fuzzy logic is introduced and the general features of the design and operation processes are outlined. The performance of two configurations of the proposed power quality manager are compared in terms of a recently formulated unified power quality index. The validity and integrity of the proposed system is proved through computer simulated experiments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with Takagi-Sugeno (TS) fuzzy model identification of nonlinear systems using fuzzy clustering. In particular, an extended fuzzy Gustafson-Kessel (EGK) clustering algorithm, using robust competitive agglomeration (RCA), is developed for automatically constructing a TS fuzzy model from system input-output data. The EGK algorithm can automatically determine the 'optimal' number of clusters from the training data set. It is shown that the EGK approach is relatively insensitive to initialization and is less susceptible to local minima, a benefit derived from its agglomerate property. This issue is often overlooked in the current literature on nonlinear identification using conventional fuzzy clustering. Furthermore, the robust statistical concepts underlying the EGK algorithm help to alleviate the difficulty of cluster identification in the construction of a TS fuzzy model from noisy training data. A new hybrid identification strategy is then formulated, which combines the EGK algorithm with a locally weighted, least-squares method for the estimation of local sub-model parameters. The efficacy of this new approach is demonstrated through function approximation examples and also by application to the identification of an automatic voltage regulation (AVR) loop for a simulated 3 kVA laboratory micro-machine system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a multiple input single output fuzzy logic governor algorithm that can be used to improve the transient response of a diesel generating set, when supplying an islanded load. The proposed governor uses the traditional speed input in addition to voltage and power factor to modify the fuelling requirements during various load disturbances. The use of fuzzy logic control allows the use of PID type structures that can provide variable gain strategies to account for non-linearities in the system. Fuzzy logic also provides a means of processing other input information by linguistic reasoning and a logical control output to aid the governor action during transient disturbance. The test results were obtained using a 50 kVA naturally aspirated diesel generator testing facility. Both real and reactive load tests were conducted. The complex load test results demonstrate that, by using additional inputs to the governor algorithm, enhanced generator transient speed recovery response can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the identification of complex dynamic systems using fuzzy neural networks, one of the main issues is the curse of dimensionality, which makes it difficult to retain a large number of system inputs or to consider a large number of fuzzy sets. Moreover, due to the correlations, not all possible network inputs or regression vectors in the network are necessary and adding them simply increases the model complexity and deteriorates the network generalisation performance. In this paper, the problem is solved by first proposing a fast algorithm for selection of network terms, and then introducing a refinement procedure to tackle the correlation issue. Simulation results show the efficacy of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique for automatic exploration of the genetic search region through fuzzy coding (Sharma and Irwin, 2003) has been proposed. Fuzzy coding (FC) provides the value of a variable on the basis of the optimum number of selected fuzzy sets and their effectiveness in terms of degree-of-membership. It is an indirect encoding method and has been shown to perform better than other conventional binary, Gray and floating-point encoding methods. However, the static range of the membership functions is a major problem in fuzzy coding, resulting in longer times to arrive at an optimum solution in large or complicated search spaces. This paper proposes a new algorithm, called fuzzy coding with a dynamic range (FCDR), which dynamically allocates the range of the variables to evolve an effective search region, thereby achieving faster convergence. Results are presented for two benchmark optimisation problems, and also for a case study involving neural identification of a highly non-linear pH neutralisation process from experimental data. It is shown that dynamic exploration of the genetic search region is effective for parameter optimisation in problems where the search space is complicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fixed and wireless networks are increasingly converging towards common connectivity with IP-based core networks. Providing effective end-to-end resource and QoS management in such complex heterogeneous converged network scenarios requires unified, adaptive and scalable solutions to integrate and co-ordinate diverse QoS mechanisms of different access technologies with IP-based QoS. Policy-Based Network Management (PBNM) is one approach that could be employed to address this challenge. Hence, a policy-based framework for end-to-end QoS management in converged networks, CNQF (Converged Networks QoS Management Framework) has been proposed within our project. In this paper, the CNQF architecture, a Java implementation of its prototype and experimental validation of key elements are discussed. We then present a fuzzy-based CNQF resource management approach and study the performance of our implementation with real traffic flows on an experimental testbed. The results demonstrate the efficacy of our resource-adaptive approach for practical PBNM systems