36 resultados para Cathode


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer based carbon aerogels were prepared by synthesis of a resorcinol formaldehyde gel followed by pyrolysis at 1073K under Ar and activation of the resultant carbon under CO2 at different temperatures. The prepared carbon aerogels were used as active materials in the preparation of cathode electrodes for lithium oxygen cells and the electrochemical performance of the cells was evaluated by galvanostatic charge/discharge cycling and electrochemical impedance measurements. It was shown that the storage capacity and discharge voltage of a Li/O2 cell strongly depend on the porous structure of the carbon used in cathode. EIS results also showed that the shape and value of the resistance in the impedance spectrum of a Li/O2 cell are strongly affected by the porosity of carbon used in the cathode. Porosity changes due to the build up of discharge products hinder the oxygen and lithium ion transfer into the electrode, resulting in a gradual increase in the cell impedance with cycling. The discharge capacity and cycle life of the battery decrease significantly as its internal resistance increases with charge/discharge cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltarnmetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at It 23 K for 7 h with a cathodic current density of 5 mA cm(-2). If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reflex discharge plasma, obtained as a hybrid between a Penning discharge plasma (PDP) and a hollow-cathode discharge (HCD) plasma, is analysed as a possible direction-current, high-density plasma source. The experiment is run in oxygen at pressures of 10 mTorr and 1 mTorr, and for discharge currents of 100 to 200 mA. Although the gas pressure is considerably lower than those used in HCDs, the hollow-cathode effect (HCE) occurs for current levels higher than 100 mA and leads to plasma densities comparable with those obtained using inductive plasma sources. The presence of a constant magnetic field leads to the enhancement of electron emission from cathodes under ion bombardment, and to the decreasing of the ion loss by diffusion to the wall.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here a self-consistent one-dimensional continuum model is presented for a narrow gap plane-parallel dc glow discharge. The governing equations consist of continuity and momentum equations for positive and negative ions and electrons coupled with Poisson's equation. A singular perturbation method is developed for the analysis of high pressure dc glow discharge. The kinetic processes of the ionization, electron attachment, and ion-ion recombination are included in the model. Explicit results are obtained for the asymptotic limits: delta=(r(D)/L)(2)--> 0, omega=(r(S)/L)(2)--> 0, where r(D) is the Debye radius, r(S) is recombination length, and L is the gap length. The discharge gap divides naturally into four layers with multiple space scales: anode fall region, positive column, transitional region, cathode fall region and diffusion layer adjacent to the cathode surface, its formation is discussed. The effects of the gas pressure, gap spacing and dc voltage on the electrical properties of the layers and its dimension are investigated. (C) 2000 American Institute of Physics. [S0021-8979(00)00813-6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here a self-consistent continuum model is presented for a narrow gap plane-parallel dc glow discharge. The set of governing equations consisting of continuity and momentum equations for positive ions, fast (emitted by the cathode) and slow electrons (generated by fast electron impact ionization) coupled with Poisson's equation is treated by the technique of matched asymptotic expansions. Explicit results are obtained in the asymptotic limit: (chi delta) much less than 1, where chi = e Phi(a)/kT, delta = (r(D)/L)(2) (Phi(a) is the applied voltage, r(D) is the Debye radius) and pL much greater than 1(Hg mm cm), where p is the gas pressure and L is the gap length. In the case of high pressure, the electron energy relaxation length is much smaller than the gap length, and so the local field approximation is valid. The discharge space divides naturally into a cathode fall sheath, a quasineutral plasma region, and an anode fall sheath. The electric potential distribution obtained for each region in a (semi)analytical form is asymptotically matched to the adjoining regions in the region of overlap. The effects of the gas pressure, gap length, and applied voltage on the length of each region are investigated. (C) 2000 American Institute of Physics. [S1070-664X(00)01302-1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-assembled electrodeposited nanorod materials have been shown to offer an exciting landscape for a wide array of research ranging from nanophotonics through to biosening and magnetics. However, until now, the scope for site-specific preparation of the nanorods on wafers is limited to local area definition. Further there is little or no lateral control of nanorod height. In this work we present a scalable method for controlling the growth of the nanorods in the vertical direction as well as their lateral position. A focused ion beam (FIB) pre-patterns the Au cathode layer prior to the creation of the Anodized Aluminium Oxide (AAO) template on top. When the pre-patterning is of the same dimension to the pore spacing of the AAO template, lines of single nanorods are successfully grown. Further, for sub-200 nm wide features a relationship between the nanorod height and distance from non-patterned cathode can be seen to follow a quadratic growth rate obeying Faradays law of electrodeposition. This facilitates lateral control of nanorod height combined with localised growth of the nanorods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel electrode structures for the direct methanol fuel cell (DMFC) based on Ti mesh are reported. A new anode with a hydrophilic structure prepared by coating Pt-Ru catalyst on Ti mesh using thermal decomposition showed a performance comparable to that of the conventional porous carbon-based structure one in DMFC, whilst a cathode with the same structure showed a poor performance. When a porous structure based on Ti mesh pre-coated with carbon was used as the cathode structure, the performance increased significantly to reach that of conventional carbon paper-based cathode. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel tubular cell structure for a direct methanol fuel cell (DMFC) is proposed based on a tubular Ti mesh and a Ti mesh anode. A dip coating method has been developed to fabricate the cell. The characterization of the tubular MEA has been analyzed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), half cell and single cell testing. The tubular DMFC single cell comprises: a Ti mesh, a cathode diffusion layer and catalyst layer, a Nafion recast membrane and a PtRuO/Ti anode. Half cell tests show that the optimum catalyst loading, Ru/(Ru + Pt) atomic ratio and the Nafion loading of a PtRuO/Ti mesh anode are: 4 mg cm, 38% and 0.6 mg cm, respectively. Single cell tests show that the Nafion loading of the recast Nafion membrane and the concentration of the methanol in the electrolyte have a major influence on cell performance. © 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present a study on the physical and electrochemical properties of three new Deep Eutectic Solvents (DESs) based on N-methylacetamide (MAc) and a lithium salt (LiX, with X = bis[(trifluoromethyl)sulfonyl]imide, TFSI; hexafluorophosphate, PF; or nitrate, NO). Based on DSC measurements, it appears that these systems are liquid at room temperature for a lithium salt mole fraction ranging from 0.10 to 0.35. The temperature dependences of the ionic conductivity and the viscosity of these DESs are correctly described by using the Vogel-Tammann-Fulcher (VTF) type fitting equation, due to the strong interactions between Li, X and MAc in solution. Furthermore, these electrolytes possess quite large electrochemical stability windows up to 4.7-5 V on Pt, and demonstrate also a passivating behavior toward the aluminum collector at room temperature. Based on these interesting electrochemical properties, these selected DESs can be classified as potential and promising electrolytes for lithium-ion batteries (LIBs). For this purpose, a test cell was then constructed and tested at 25 °C, 60 °C and 80 °C by using each selected DES as an electrolyte and LiFePO (LFP) material as a cathode. The results show a good compatibility between each DES and LFP electrode material. A capacity of up to 160 mA h g with a good efficiency (99%) is observed in the DES based on the LiNO salt at 60 °C despite the presence of residual water in the electrolyte. Finally preliminary tests using a LFP/DES/LTO (lithium titanate) full cell at room temperature clearly show that LiTFSI-based DES can be successfully introduced into LIBs. Considering the beneficial properties, especially, the cost of these electrolytes, such introduction could represent an important contribution for the realization of safer and environmentally friendly LIBs. © 2013 the Owner Societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study explores the application of a two-stage electrokinetic washing system on remediation of lead (Pb) contaminated soil. The process involved an initial soil washing, followed by an electrokinetic process. The use of electrokinetic process in soil washing not only provided additional driving force for transporting the desorbed Pb away from the soil but also reduced the high usage of wash solution. In this study, the effect of NaNO3, HNO3, citric acid and EDTA as wash solutions on two-stage electrokinetic washing system were evaluated. The results revealed that a two-stage electrokinetic washing process enhanced Pb removal efficiency by 2.52-9.08% and 4.98-20.45% in comparison to a normal electrokinetic process and normal washing process, respectively. Low pH and adequate current were the most important criteria in the removal process as they provided superior desorption and transport properties. The effect of chelating by EDTA was less dominant as it delayed the removal process by forming a transport loop in anode region between Pb ion and complexes. HNO3 was not suitable as wash solution in electrokinetic washing in spite of offering highest removal efficiency as it caused pH fluctuation in the cathode chamber, corroded graphite anode and showed high power consumption. In contrast, citric acid not only yielded high Pb removal efficiency with low power consumption but also maintained a low soil: solution ratio of 1 g: <1 mL, stable pH and electrode integrity. Possible transport mechanisms for Pb under each wash solution are also discussed in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitrogen-doped graphene (N-graphene) was reported to exhibit a good activity experimentally as an electrocatalyst of oxygen reduction reaction (ORR) on the cathode of fuel cells under the condition of electropotential of similar to 0.04 V (vs. NNE) and pH of 14. This material is promising to replace or partially replace the conventionally used Pt. In order to understand the experimental results. ORR catalyzed by N-graphene is studied using density functional theory (DFT) calculations under experimental conditions taking the solvent, surface adsorbates, and coverages into consideration. Two mechanisms, i.e., dissociative and associative mechanisms, over different N-doping configurations are investigated. The results show that N-graphene surface is covered by O with 1/6 monolayer, which is used for reactions in this work. The transition state of each elementary step was identified using four different approaches, which give rise to a similar chemistry. A full energy profile including all the reaction barriers shows that the associative mechanism is more energetically favored than the dissociative one and the removal of O species from the surface is the rate-determining step. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A lack of suitable high-performance cathode materials has become the major barrier to their applications in future advanced communication equipment and electric vehicle power systems. In this paper, we have developed a layer-by-layer self-assembly approach for fabricating a novel sandwich nanoarchitecture of multilayered LiV3O8 nanoparticle/graphene nanosheet (M-nLVO/GN) hybrid electrodes for potential use in high performance lithium ion batteries by using a porous Ni foam as a substrate. The prepared sandwich nanoarchitecture of M-nLVO/GN hybrid electrodes exhibited high performance as a cathode material for lithium-ion batteries, such as high reversible specific capacity (235 mA h g-1 at a current density of 0.3 A g-1), high coulombic efficiency (over 98%), fast rate capability (up to a current density of 10 A g-1), and superior capacity retention during cycling (90% capacity retention with a current density of 0.3 A g-1 after 300 cycles). Very significantly, this novel insight into the design and synthesis of sandwich nanoarchitecture would extend their application to various electrochemical energy storage devices, such as fuel cells and supercapacitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three-dimensional ordered mesoporous (3DOM) ZnCo2O4 materials have been synthesized via a hard template and used as bifunctional electrocatalysts for rechargeable Li-O2 batteries. The as-prepared ZnCo2O4 nanoparticles possess a high specific surface area of 127.2 m2 g-1 and a spinel crystalline structure. The Li-O2 battery utilizing 3DOM ZnCo2O4 shows a higher specific capacity of 6024 mAh g-1 than that with pure Ketjen black (KB). Moreover, the ZnCo2O4-based electrode enables much enhanced cyclability with a smaller discharge-recharge voltage gap than that of the carbon-only cathode. Such excellent catalytic performance of ZnCo2O4 could be associated with its larger surface area and 3D ordered mesoporous structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical performance of one-dimensional porous La0.5Sr0.5CoO2.91 nanotubes as a cathode catalyst for rechargeable nonaqueous lithium-oxygen (Li-O2) batteries is reported here for the first time. In this study, one-dimensional porous La0.5Sr0.5CoO2.91 nanotubes were prepared by a simple and efficient electrospinning technique. These materials displayed an initial discharge capacity of 7205 mAh g-1 with a plateau at around 2.66 V at a current density of 100 mA g-1. It was found that the La0.5Sr0.5CoO2.91 nanotubes promoted both oxygen reduction and oxygen evolution reactions in alkaline media and a nonaqueous electrolyte, thereby improving the energy and coulombic efficiency of the Li-O2 batteries. The cyclability was maintained for 85 cycles without any sharp decay under a limited discharge depth of 1000 mAh g-1, suggesting that such a bifunctional electrocatalyst is a promising candidate for the oxygen electrode in Li-O2 batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-dimensional (3D) graphene-Co3O4 electrode was prepared by a two-step method in which graphene was initially deposited on a Ni foam with Co3O4 then grown on the resulting graphene structure. Cross-linked Co3O4 nanosheets with an open pore structure were fully and vertically distributed throughout the graphene skeleton. The free-standing and binder-free monolithic electrode was used directly as a cathode in a Li-O2 battery. This composite structure exhibited enhanced performance with a specific capacity of 2453 mA h g-1 at 0.1 mA cm-2 and 62 stable cycles with 583 mA h g-1 (1000 mA h gcarbon-1). The excellent electrochemical performance is associated with the unique architecture and superior catalytic activity of the 3D electrode.