30 resultados para Browse (Animal food)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A confirmatory method has been developed and validated that allows for the simultaneous detection of medroxyprogesterone acetate (MPA), megestrol acetate (MGA), melengestrol acetate (MLA), chlormadinone acetate (CMA) and delmadinone acetate (DMA) in animal kidney fat using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The compounds were extracted from kidney fat using acetonitrile, defatted using a hexane wash and subsequent saponification. Extracts were then purified on Isolute CN solid-phase extraction cartridges and analysed by LC-MS/MS. The method was validated in animal kidney fat in accordance with the criteria defined in Commission Decision 2002/657/EC. The decision limit (CC) was calculated to be 0.12, 0.48, 0.40, 0.63 and 0.54 g kg-1, respectively, for MPA, MGA, MLA, DMA and CMA, with respective detection capability (CC) values of 0.20, 0.81, 0.68, 1.07 and 0.92 g kg-1. The measurement uncertainty of the method was estimated at 16, 16, 19, 27 and 26% for MPA, MGA, MLA, DMA and CMA, respectively. Fortifying kidney fat samples (n = 18) in three separate assays showed the accuracy of the method to be between 98 and 100%. The precision of the method, expressed as % RSD, for within-laboratory reproducibility at three levels of fortification (1, 1.5 and 2 g kg-1 for MPA, 5, 7.5 and 10 g kg-1 for MGA, MLA, DMA and CMA) was less than 5% for all analytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey x Holstein-Friesian (J x HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) x 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J x HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J x HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J x HF cows, whereas the J x HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype x environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF cows, and overall pregnancy rate was unaffected by either genotype or management system. In summary, milk and SCM yields were higher with CON than with GRZ, whereas genotype had no effect on SCM. However, HF cows exhibited a greater milk yield response and a trend toward a greater SCM yield response with increasing concentrate levels compared with the crossbred cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. We examined the empirical relationship between predator-prey body size ratio and interaction strength in the Ythan Estuary food web.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Recent efforts to understand how the patterning of interaction strength affects both structure and dynamics in food webs have highlighted several obstacles to productive synthesis. Issues arise with respect to goals and driving questions, methods and approaches, and placing results in the context of broader ecological theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model system, HOOFS (Hierarchical Object Orientated Foraging Simulator), has been developed to study foraging by animals in a complex environment. The model is implemented using an individual-based object-orientated structure. Different species of animals inherit their general properties from a generic animal object which inherits from the basic dynamic object class. Each dynamic object is a separate program thread under the control of a central scheduler. The environment is described as a map of small hexagonal patches, each with their own level of resources and a patch-specific rate of resource replenishment. Each group of seven patches (0th order) is grouped into a Ist order super-patch with seven nth order super-patches making up a n + 1th order super-patch for n up to a specified value. At any time each animal is associated with a single patch. Patch choice is made by combining the information on the resources available within different order patches and super-patches along with information on the spatial location of other animals. The degree of sociality of an animal is defined in terms of optimal spacing from other animals and by the weighting of patch choice based on social factors relative to that based on food availability. Information, available to each animal, about patch resources diminishes with distance from that patch. The model has been used to demonstrate that social interactions can constrain patch choice and result in a short-term reduction of intake and a greater degree of variability in the level of resources in patches. We used the model to show that the effect of this variability on the animal's intake depends on the pattern of patch replenishment. (C) 1998 Elsevier Science B.V. All rights reserved.</p>

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective
To investigate the effect of fast food consumption on mean population body mass index (BMI) and explore the possible influence of market deregulation on fast food consumption and BMI.

Methods
The within-country association between fast food consumption and BMI in 25 high-income member countries of the Organisation for Economic Co-operation and Development between 1999 and 2008 was explored through multivariate panel regression models, after adjustment for per capita gross domestic product, urbanization, trade openness, lifestyle indicators and other covariates. The possible mediating effect of annual per capita intake of soft drinks, animal fats and total calories on the association between fast food consumption and BMI was also analysed. Two-stage least squares regression models were conducted, using economic freedom as an instrumental variable, to study the causal effect of fast food consumption on BMI.

Findings
After adjustment for covariates, each 1-unit increase in annual fast food transactions per capita was associated with an increase of 0.033 kg/m2 in age-standardized BMI (95% confidence interval, CI: 0.013–0.052). Only the intake of soft drinks – not animal fat or total calories – mediated the observed association (β: 0.030; 95% CI: 0.010–0.050). Economic freedom was an independent predictor of fast food consumption (β: 0.27; 95% CI: 0.16–0.37). When economic freedom was used as an instrumental variable, the association between fast food and BMI weakened but remained significant (β: 0.023; 95% CI: 0.001–0.045).

Conclusion
Fast food consumption is an independent predictor of mean BMI in high-income countries. Market deregulation policies may contribute to the obesity epidemic by facilitating the spread of fast food.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Issues surrounding the misuse of prohibited and licensed substances in animals destined for food production and performance sport competition continue to be an enormous challenge to regulatory authorities charged with enforcing their control. Efficient analytical strategies are implemented to screen and confirm the presence of a wide range of exogenous substances in various biological matrices. However, such methods rely on the direct measurement of drugs and/or their metabolites in a targeted mode, allowing the detection of restricted number of compounds. As a consequence, emerging practices, in particular the use of natural hormones, designer drugs and low-dose cocktails, remain difficult to handle from a control point of view. A new SME-led FP7 funded project, DeTECH21, aims to overcome current limitations by applying an untargeted metabolomics approach based on liquid chromatography coupled to high resolution mass spectrometry and bioinformatic data analysis to identify bovine and equine animals which have been exposed to exogenous substances and assist in the identification of administered compounds. Markerbased strategies, dealing with the comprehensive analysis of metabolites present in a biological sample (urine/plasma/tissue), offer a reliable solution in the areas of food safety and animal sport doping control by effective, high-throughput and sensitive detection of exogenously administered agents. Therefore, the development of the first commercially available forensic test service based on metabolomics profiling will meet 21st century demands in animal forensics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid and sensitive detection of viral infections associated with Bovine Respiratory Disease (BRD) in live animals is recognized as key to minimizing the impact of this disease. ELISA-based testing is limited as it typically relies on the detection of a single viral antibody subtype within an individual test sample and testing is relatively slow and expensive. We have recently initiated a new project entitled AgriSense to develop a novel low-cost and label-free, integrated bimodal electronic biosensor system for BRD. The biosensor system will consist of an integrated multichannel thin-film-transistor biosensor and an electrochemical impedance spectroscopy biosensor, interfaced with PDMS-based microfluidic sample delivery channels. By using both sensors in tandem, nonspecific binding biomolecules must have the same mass to charge ratio as the target analyte to elicit equivalent responses from both sensors. The system will target simultaneous multiplexed sensing of the four primary viral agents involved in the development of BRD: bovine herpesvirus-1 (BHV-1), bovine parainfluenza virus-3 (BPIV-3), bovine respiratory syncytial virus (BRSV), and bovine viral diarrhea (BVD). Optimized experimental conditions derived through model antigen-antibody studies will be applied to the detection of serological markers of BRD-related infections based on IgG interaction with a panel of sensor-immobilized viral proteins. This rapid, “cowside” multiplex sensor capability presents a major step forward in disease diagnosis, helping to ensure the integrity of the agri-food supply chain by reducing the risk of disease spread during animal movement and transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate and other environmental change presents a number of challenges for effective food safety. Food production, distribution and consumption takes place within functioning ecosystems but this backdrop is often ignored or treated as static and unchanging. The risks presented by environmental change include novel pests and diseases, often caused by problem species expanding their spatial distributions as they track changing conditions, toxin generation in crops, direct effects on crop and animal production, consequences for trade networks driven by shifting economic viability of production methods in changing environments and finally, wholesale transformation of ecosystems as they respond to novel climatic regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fasciolosis, a food-borne trematodiasis, results following infection with the parasites, Fasciola hepatica and Fasciola gigantica. These trematodes greatly affect the global agricultural community, infecting millions of ruminants worldwide and causing annual economic losses in excess of US $3 billion. Fasciolosis, an important zoonosis, is classified by WHO as a neglected tropical disease with an estimated 17 million people infected and a further 180 million people at risk of infection. The significant impact on agriculture and human health together with the increasing demand for animal-derived food products to support global population growth demonstrate that fasciolosis is a major One Health problem. This review details the problematic issues surrounding fasciolosis control, including drug resistance, lack of diagnosis and the threat that hybridization of the Fasciola species poses to future animal and human health. We discuss how these parasites may mediate their long-term survival through regulation and modulation of the host immune system, by altering the host immune homeostasis and/or by influencing the intestinal microbiome particularly in respect to concurrent infections with other pathogens. Large genome, transcriptome and proteomic data sets are now available to support an integrated One Health approach to develop novel diagnostic and control strategies for both animal and human disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing research has highlighted the effects of changing climates on the occurrence and prevalence of toxigenic Aspergillus species producing aflatoxins. There is concern of the toxicological effects to human health and animal productivity following acute and chronic exposure that may affect the future ability to provide safe and sufficient food globally. Considerable research has focused on the detection of these toxins, based on the physicochemical and biochemical properties of the aflatoxin compounds, in agricultural products for human and animal consumption. As improvements in food security continue more regulations for acceptable levels of aflatoxins have arisen globally; the most stringent in Europe. These regulations are important for developing countries as aflatoxin occurrence is high significantly effecting international trade and the economy. In developed countries analytical approaches have become highly sophisticated, capable of attaining results with high precision and accuracy, suitable for regulatory laboratories. Regrettably, many countries that are affected by aflatoxin contamination do not have resources for high tech HPLC and MS instrumentation and require more affordable, yet robust equally accurate alternatives that may be used by producers, processors and traders in emerging economies. It is especially important that those companies wishing to exploit the opportunities offered by lucrative but highly regulated markets in the developed world, have access to analytical methods that will ensure that their exports meet their customers quality and safety requirements.

This work evaluates the ToxiMet system as an alternative approach to UPLC–MS/MS for the detection and determination of aflatoxins relative to current European regulatory standards. Four commodities: rice grain, maize cracked and flour, peanut paste and dried distillers grains were analysed for natural aflatoxin contamination. For B1 and total aflatoxins determination the qualitative correlation, above or below the regulatory limit, was good for all commodities with the exception of the dried distillers grain samples for B1 for which no calibration existed. For B1 the quantitative R2 correlations were 0.92, 0.92, 0.88 (<250 μg/kg) and 0.7 for rice, maize, peanuts and dried distillers grain samples respectively whereas for total aflatoxins the quantitative correlation was 0.92, 0.94, 0.88 and 0.91. The ToxiMet system could be used as an alternative for aflatoxin analysis for current legislation but some consideration should be given to aflatoxin M1 regulatory levels for these commodities considering the high levels detected in this study especially for maize and peanuts