182 resultados para Annihilation reactions
Resumo:
Protein TrwC is the conjugative relaxase responsible for DNA processing in plasmid R388 bacterial conjugation. TrwC has two catalytic tyrosines, Y18 and Y26, both able to carry out cleavage reactions using unmodified oligonucleotide substrates. Suicide substrates containing a 30-Sphosphorothiolate linkage at the cleavage site displaced TrwC reaction towards covalent adducts and thereby enabled intermediate steps in relaxase reactions to be investigated. Two distinct covalent TrwC–oligonucleotide complexes could be separated from noncovalently bound protein by SDS–PAGE. As observed by mass spectrometry, one complex contained a single, cleaved oligonucleotide bound to Y18, whereas the other contained two cleaved oligonucleotides, bound to Y18 and Y26. Analysis of the cleavage reaction using suicide substrates and Y18F or Y26F mutants showed that efficient Y26 cleavage only occurs after Y18 cleavage. Strand-transfer reactions carried out with the isolated Y18–DNA complex allowed the assignment of specific roles to each tyrosine. Thus, only Y18 was used for initiation. Y26 was specifically used in the second transesterification that leads to strand transfer, thus catalyzing the termination reaction that occurs in the recipient cell.
Resumo:
A series of Hunig's base tethered ammonium ionic liquids have been used to catalyse the Knoevenagel condensation of aldehydes/ketones with malononitrile and ethyl cyanoacetate. The reactions were performed under homogeneous and under biphasic, liquid-liquid and liquid-silica supported ionic liquid, conditions with the biphasic systems employing cyclohexene as the second phase. By increasing the distance between the ammonium head group and Hunig's base the activity of the catalyst was found to increase. Higher activity, in general, was found under homogeneous reaction conditions; however, the recyclability of the catalyst was improved by supporting the BIL under biphasic conditions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Imidazolium-tagged bis(oxazolines) have been prepared and used as chiral ligands in the copper(II)-catalysed Diels-Alder reaction of N-acryloyl- and N-crotonoyloxazolidinones with cyclopentadiene and 1,3-cyclohexadiene in the ionic liquid 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [emim][NTf2]. A significant and substantial enhancement in the rate and enantioselectivity was achieved in [emim][NTf2] compared with dichloromethane. For example, complete conversion and enantioselectivities up to 95 % were obtained for the reaction between N-acryloyloxazolidinone and cyclopentadiene within 2 min in [emim][NTf2] whereas the corresponding reaction in dichloromethane required 60 min to reach completion and gave an ee of only 16 %. The enhanced rates obtained in the ionic liquid enabled a catalyst loading as low as 0.5 mol % to give complete conversion within 2 min while retaining the same level of enantioselectivity. The imidazolium-tagged catalysts can be recycled ten times without any loss in activity or enantioselectivity and showed much higher affinity for the ionic liquid phase during the recycle procedure than the analogous uncharged ligand.
Resumo:
Sulfoxidation reactions of 4,6-dimethyl-2-methylthiopyrimidine have been performed using titanosilicate catalysts in ionic liquids, dioxane and ethanol. The ionic liquid reactions showed superior reactivity compared with molecular solvents. Moreover, on examination of the recycling of the catalyst, a significant increase in the stability of catalyst was found both in terms of recycling activity and leaching of the titanium from the catalyst. The mechanism by which the ionic liquid reduces the solubilisation of the catalysts is explored.
Resumo:
Asymmetric Diels-Alder reactions using platinum complexes of BINAP, or of conformationally flexible NUPHOS-type diphosphines, have been compared in dichloromethane and selected ionic liquids. Significant enhancements in the enantioselectivity (Deltaee approximate to 20%), as well as reaction rate, were achieved in ionic liquids compared with the organic media.
Resumo:
Conformationally flexible NUPHOS-type diphosphines have been resolved as their diastereopure platinum BINOLate complexes delta- and lambda-[(NUPHOS)Pt{(S)-BINOL}] and the corresponding enantiopure Lewis acids delta- and lambda-[(NUPHOS)Pt(OTf)(2)], being generated by protonation with trifluoromethanesulfonic acid, act as highly efficient catalysts for the hetero-Diels-Alder reaction of nonactivated conjugated dienes with aryl glyoxals and glyoxylate esters, giving ee's as high as 99%.