56 resultados para Aluminum oxides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By use of high intensity XUV radiation from the FLASH free-electron laser at DESY, we have created highly excited exotic states of matter in solid-density aluminum samples. The XUV intensity is sufficiently high to excite an inner-shell electron from a large fraction of the atoms in the focal region. We show that soft-x-ray emission spectroscopy measurements reveal the electronic temperature and density of this highly excited system immediately after the excitation pulse, with detailed calculations of the electronic structure, based on finite-temperature density functional theory, in good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron tunnelling spectroscopy, developed to extract superconductive metals the electron-phonon spectral density, $\alpha^2F(\nu)$, is found to be a powerful tool also for extracting a more realistic pseudopotential from such metals. The pseudopotential so extracted has a range of surprising but physically reasonable properties and regenerates $\alpha^2F(\nu)$ accurately. Free from most of its long-standing uncertainties, thie pseudopotential may be useful in a number of active fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic principles of semiconductor photochemistry, particularly using titania as a semiconductor photocatalyst, are discussed. When a platinum group metal or its oxide is deposited onto the surface of a sensitised semiconductor the overall efficiency of the reactions it takes part in are often improved, especially when the deposits are used as hydrogen and oxygen catalysts, respectively. Methods of depositing metal or metal oxide are examined, and a particular focus is given to a photodeposition process that uses a sacrificial electron donor. Platinum group metal and platinum group metal oxide coated semiconductor photocatalysts are prominent in heterogeneous systems that are capable of the photoreduction, oxidation and cleavage of water. There is a recent renaissance in work on water-splitting semiconductor-sensitised photosystems, but there are continued concerns over their irreproducibility, longevity and photosynthetic nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of oxidative dissolution of a number of different samples of chromium(III) oxide by periodate ions in 1 mol dm-3 HClO4 solution have been studied and the results interpreted using the inverse-cubic rate law. The metaperiodate acts as a two-electron oxidant and the overall reaction stoichiometry involves the reaction of 3 mol of periodate with 1 mol of Cr(III) oxide. From a detailed study of the kinetics of dissolution the rate-determining step appears to be the reaction between an adsorbed periodate ion and its associated Cr(III) oxide surface site, with inhibition by one of the reaction products, iodate, through competitive adsorption. Analysis of the kinetic data generates values for the Langmuir adsorption coefficients for periodate and iodate ions on highly hydrated Cr(III) oxide of 84 +/- 8 and 2600 +/- 370 dm3 mol-1, respectively. The Cr(III) oxide-periodate reaction has a high overall activation energy, 82 +/- 6 kJ mol-1. The kinetics of dissolution of highly hydrated Cr(III) oxide under conditions in which the simple inverse-cubic rate law function does not apply can be successfully predicted using a simple kinetic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filamentary ionization tracks have been observed via optical probing inside Al-coated glass targets after the interaction of a picosecond 20-TW laser pulse at intensities above 10(19) W/cm(2). The tracks, up to 700 mu m in length and between 10 and 20 mu m in width, originate from the focal spot region of the laser beam. Simulations performed with 3D particle-in-cell and 2D Fokker-Planck hybrid codes indicate that the observations are consistent with ionization induced in the glass target by magnetized, collimated beams of high-energy electrons produced during the laser interaction.