76 resultados para Aldehyde dehydrogenase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air– water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air–water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air–water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodococcus sp. NCIMB112038 can utilize naphthalene as its sole carbon and energy source. The gene encoding cis-naphthalene dihydrodiol dehydrogenase (narB) of this strain has been cloned and sequenced. Expression of NCIMB12038 cis-naphthalene dihydrodiol dehydrogenase was demonstrated in Escherichia coli cells. narB encodes a putative protein of 271 amino acids and shares 39% amino acid identity with the cis-naphthalene dihydrodiol dehydrogenase from Pseudomonas putida G7. Comparison of NarB with some putative cis-dihydrodiol dehydrogenases from Rhodococcus species revealed significant differences between these proteins. NarB together with two other proteins forms a new group of cis-dihydrodiol dehydrogenases. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Low tumour expression levels of thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD) and thymidine phosphorylase (TP) have been linked with improved outcome for colorectal cancer (CRC) patients treated with 5-fluorouracil (5-FU). It is unclear whether this occurs because such tumours have better prognosis or they are more sensitive to 5-FU treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyses one of the two steps in glycolysis which generate the reduced coenzyme NADH. This reaction precedes the two ATP generating steps. Thus, inhibition of GAPDH will lead to substantially reduced energy generation. Consequently, there has been considerable interest in developing GAPDH inhibitors as anti-cancer and anti-parasitic agents. Here, we describe the biochemical characterisation of GAPDH from the common liver fluke Fasciola hepatica (FhGAPDH). The primary sequence of FhGAPDH is similar to that from other trematodes and the predicted structure shows high similarity to those from other animals including the mammalian hosts. FhGAPDH lacks a binding pocket which has been exploited in the design of novel antitrypanosomal compounds. The protein can be expressed in, and purified from Escherichia coli; the recombinant protein was active and showed no cooperativity towards glyceraldehyde 3-phosphate as a substrate. In the absence of ligands, FhGAPDH was a mixture of homodimers and tetramers, as judged by protein-protein crosslinking and analytical gel filtration. The addition of either NAD(+) or glyceraldehyde 3-phosphate shifted this equilibrium towards a compact dimer. Thermal scanning fluorimetry demonstrated that this form was considerably more stable than the unliganded one. These responses to ligand binding differ from those seen in mammalian enzymes. These differences could be exploited in the discovery of reagents which selectively disrupt the function of FhGAPDH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzene cis-diol dehydrogenase and naphthalene cis-diol dehydrogenase enzymes, expressed in Pseudomonas putida wild-type and Escherichia coli recombinant strains, were used to investigate regioselectivity and stereoselectivity during dehydrogenations of arene, cyclic alkane and cyclic alkene vicinal cis-diols. The dehydrogenase-catalysed production of enantiopure cis-diols, α-ketols and catechols, using benzene cis-diol dehydrogenase and naphthalene cis-diol dehydrogenase, involved both kinetic resolution and asymmetric synthesis methods. The chemoenzymatic production and applications of catechol bioproducts in synthesis were investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total synthesis of phomactin G (3), which is a central intermediate in the biosynthesis of phomactin A (5) in Phoma sp. is described. The synthesis is based on a Cr(II)/Ni(II) macrocyclisation from the aldehyde vinyl iodide 9, leading to 16, followed by sequential conversion of 16 into the -epoxide 21 and the ketone 25 which, on deprotection, led to (±)-phomactin G. Phomactin G (3) shares an interesting structural homology with phomactin D (2), the most potent PAF-antagonist metabolite in Phoma sp. It is most likely converted into phomactin A (5), by initial allylic oxidation to the transient -alcohol phomactin structure 4, known as Sch 49028, followed by spontaneous pyran ring formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dioxygenase-catalysed trioxygenation of alkyl phenyl sulfides and alkyl benzenes yields enantiopure cis-dihydrodiol sulfoxides and triols respectively; naphthalene cis-dihydrodiol dehydrogenase-catalysed aromatisation of these diastereoisomers gives enantiopure catechols of either configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three novel dinucleotide analogues of nicotinamide adenine dinucleotide (NAD+) have been synthesised from -ribonolactone. These compounds incorporate a thiophene moiety in place of nicotinamide and are hydrolytically stable. They have been evaluated as inhibitors of adenosine diphosphate ribosyl cyclase, glutamate dehydrogenase and Sir2 acyltransferase activities. Enzyme specificity and a high level of inhibition was observed for the dehydrogenase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A previously unreported alcohol dehydrogenase enzyme in the mutant soil bacterium Pseudomonas putida UV4 catalyses the reduction of 2-, 3- and 4-acylpyridines to afford the corresponding (S)-1-pyridyl alkanols, with moderate to high e.e., whilst under the same conditions 2,6-diacetylpyridine is readily converted to the corresponding enantiopure C2-symmetric (S,S)-diol in one step. In contrast, the toluene dioxygenase enzyme in the same organism catalyses the hydroxylation of 2- and 3-alkylpyridines to (R)-1-(2-pyridyl) and (R)-1-(3-pyridyl)alkanols. This combination of oxidative and reductive biotransformations thus provides a method for preparing both enantiomers of chiral 1-pyridyl alkanols using one biocatalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

5-fluorouracil (5-FU) is widely used in the treatment of cancer. Over the past 20 years, increased understanding of the mechanism of action of 5-FU has led to the development of strategies that increase its anticancer activity. Despite these advances, drug resistance remains a significant limitation to the clinical use of 5-FU. Emerging technologies, such as DNA microarray profiling, have the potential to identify novel genes that are involved in mediating resistance to 5-FU. Such target genes might prove to be therapeutically valuable as new targets for chemotherapy, or as predictive biomarkers of response to 5-FU-based chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of 2-, 3- and 4-substituted pyridines was metabolised using the mutant soil bacterium Pseudomonas putida UV4 which contains a toluene dioxygenase (TDO) enzyme. The regioselectivity of the biotransformation in each case was determined by the position of the substituent. 4-Alkylpyridines were hydroxylated exclusively on the ring to give the corresponding 4-substituted 3-hydroxypyridines, while 3-alkylpyridines were hydroxylated stereoselectively on C-1 of the alkyl group with no evidence of ring hydroxylation. 2-Alkylpyridines gave both ring and side-chain hydroxylation products. Choro- and bromo-substituted pyridines, and pyridine itself, while being poor substrates for P. putida UV4, were converted to some extent to the corresponding 3-hydroxypyridines. These unoptimised biotransformations are rare examples of the direct enzyme-catalysed oxidation of pyridine rings and provide a novel synthetic method for the preparation of substituted pyridinols. Evidence for the involvement of the same TDO enzyme in both ring and side-chain hydroxylation pathways was obtained using a recombinant strain of Escherichia coli (pKST11) containing a cloned gene for TDO. The observed stereoselectivity of the side-chain hydroxylation process in P. putida UV4 was complicated by the action of an alcohol dehydrogenase enzyme in the organism which slowly leads to epimerisation of the initial (R)-alcohol bioproducts by dehydrogenation to the corresponding ketones followed by stereoselective reduction to the (S)-alcohols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of cis-dihydrodiol metabolites, available from the bacterial dioxygenase-catalysed oxidation of monosubstituted benzene substrates using Pseudomonas putida UV4, have been converted to the corresponding catechols using both a heterogeneous catalyst (Pd/C) and a naphthalene cis-diol dehydrogenase enzyme present in whole cells of the recombinant strain Escherichia coli DH5 alpha(pUC129: nar B). A comparative study of the merits of both routes to 3-substituted catechols has been carried out and the two methods have been found to be complementary. A similarity in mechanism for catechol formation under both enzymatic and chemoenzymatic conditions, involving regioselective oxidation of the hydroxyl group at C-1, has been found using deuterium labelled toluene cis-dihydrodiols. The potential, of combining a biocatalytic step (dioxygenase-catalysed cis-dihydroxylation) with a chemocatalytic step (Pd/C-catalysed dehydrogenation), into a one-pot route to catechols, from the parent substituted benzene substrates, has been realised.