43 resultados para 280402 Mathematical Logic and Formal Languages
Resumo:
In this paper, we propose a system level design approach considering voltage over-scaling (VOS) that achieves error resiliency using unequal error protection of different computation elements, while incurring minor quality degradation. Depending on user specifications and severity of process variations/channel noise, the degree of VOS in each block of the system is adaptively tuned to ensure minimum system power while providing "just-the-right" amount of quality and robustness. This is achieved, by taking into consideration block level interactions and ensuring that under any change of operating conditions, only the "less-crucial" computations, that contribute less to block/system output quality, are affected. The proposed approach applies unequal error protection to various blocks of a system-logic and memory-and spans multiple layers of design hierarchy-algorithm, architecture and circuit. The design methodology when applied to a multimedia subsystem shows large power benefits ( up to 69% improvement in power consumption) at reasonable image quality while tolerating errors introduced due to VOS, process variations, and channel noise.
Resumo:
The present longitudinal study sought to investigate the impact of poor phonology on children’s mathematical status. From a screening sample of 256 five-year-olds, 82 children were identified as either typically achieving (TA; N = 31), having comorbid poor phonology and mathematical difficulties (PDMD; N =31), or having only poor phonology (phonological difficulty, PD; N = 20). Children were assessed on eight components of informal and formal mathematics achievement at ages 5–7 years. PD children were found to have significant impairments in some, mainly formal, components of mathematics by age 7 compared to TA children. Analysis also revealed that, by age 7, approximately half of the PD children met the criteria for PDMD, while the remainder exhibited less severe deficits in some components of formal mathematics. Children’s mathematical performance at age 5, however, did not predict which PD children were more likely to become PDMD at age 7, nor did they differ in terms of phonological awareness at age 5. However, those PD children who later became PDMD had lower scores on verbal and non-verbal tests of general ability.
Resumo:
This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized that the development of mathematical skills is closely related to the development of logical abilities, a domain-general skill. In particular, we expected a close link between mathematical skills and the ability to reason independently of one's beliefs. Our results showed that this was indeed the case, with children with DD performing more poorly than controls, and high maths ability children showing outstanding skills in logical reasoning about belief-laden problems. Nevertheless, all groups performed poorly on structurally equivalent problems with belief-neutral content. This is in line with suggestions that abstract reasoning skills (i.e. the ability to reason about content without real-life referents) develops later than the ability to reason about belief-inconsistent fantasy content.A video abstract of this article can be viewed at http://www.youtube.com/watch?v=90DWY3O4xx8.
Resumo:
In this paper we continue our investigation into the development of computational-science software based on the identification and formal specification of Abstract Data Types (ADTs) and their implementation in Fortran 90. In particular, we consider the consequences of using pointers when implementing a formally specified ADT in Fortran 90. Our aim is to highlight the resulting conflict between the goal of information hiding, which is central to the ADT methodology, and the space efficiency of the implementation. We show that the issue of storage recovery cannot be avoided by the ADT user, and present a range of implementations of a simple ADT to illustrate various approaches towards satisfactory storage management. Finally, we propose a set of guidelines for implementing ADTs using pointers in Fortran 90. These guidelines offer a way gracefully to provide disposal operations in Fortran 90. Such an approach is desirable since Fortran 90 does not provide automatic garbage collection which is offered by many object-oriented languages including Eiffel, Java, Smalltalk, and Simula.
Resumo:
Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion: electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H-3(+) and water at their dissociation limits; laser- heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.
Resumo:
Abstract This study evaluates the reliability of self-assessment as a measure of computer competence. This evaluation is carried out in response to recent research which has employed self-reported ratings as the sole indicator of students’ computer competence. To evaluate the reliability of self-assessed computer competence, the scores achieved by students in self-assessed computer competence tests are compared with scores achieved in objective tests. The results reveal a statistically significantly over-estimation of computer competence among the students surveyed. Furthermore, reported pre-university computer experience in terms of home and school use and formal IT education does not affect this result. The findings call into question the validity of using self-assessment as a measure of computer competence. More generally, the study also provides an up-to-date picture of self-reported computer usage and IT experience among pre-university students from New Zealand and South-east Asia and contrasts these findings with those from previous research.
Resumo:
As semiconductor electronic devices scale to the nanometer range and quantum structures (molecules, fullerenes, quantum dots, nanotubes) are investigated for use in information processing and storage, it, becomes useful to explore the limits imposed by quantum mechanics on classical computing. To formulate the problem of a quantum mechanical description of classical computing, electronic device and logic gates are described as quantum sub-systems with inputs treated as boundary conditions, outputs expressed.is operator expectation values, and transfer characteristics and logic operations expressed through the sub-system Hamiltonian. with constraints appropriate to the boundary conditions. This approach, naturally, leads to a description of the subsystem.,, in terms of density matrices. Application of the maximum entropy principle subject to the boundary conditions (inputs) allows for the determination of the density matrix (logic operation), and for calculation of expectation values of operators over a finite region (outputs). The method allows for in analysis of the static properties of quantum sub-systems.
Resumo:
Recent progress in laboratory-based electron-ion scattering is reviewed, and the sensitivity of observed interference structure as a probe of collision dynamics is discussed. The extension of our use of positive ions as scattering targets to photon-ion interactions is demonstrated with the first ion-beam measurements for the fragmentation of a molecular ion, H-2(+), using intense femtosecond laser pulses.
Resumo:
We prove that under certain topological conditions on the set of universal elements of a continuous map T acting on a topological space X, that the direct sum T and M_g is universal, where M_g is multiplication by a generating element of a compact topological group. We use this result to characterize R_+-supercyclic operators and to show that whenever T is a supercyclic operator and z_1,...,z_n are pairwise different non-zero complex numbers, then the operator z_1T\oplus ... \oplus z_n T is cyclic. The latter answers affirmatively a question of Bayart and Matheron.
Resumo:
Matrix algorithms are important in many types of applications including image and signal processing. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix algorithms such as matrix multiplication. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using a novel custom coprocessor system for MATrix algorithms based on Reconfigurable Computing (RCMAT). The proposed RCMAT architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.
Resumo:
Within undergraduate psychology courses, students often have significant levels of anxiety and negative attitudes toward the statistical element. This has been attributed to poor interaction with teachers, fears about mathematical abilities, and simply being unaware of that portion of the course or its relevance to psychology. To address this, 196 undergraduate psychology students completed a survey on statistics anxiety and attitudes. Additionally, 27 different students in similar situations took part in focus group to share their experiences of introductory statistics courses. Survey results showed that fewer than half were aware of the statistics portion of their course and that the expectation was a key factor in their experiences. Qualitative feedback from the focus groups revealed much about how the teaching may or may not improve attitudes nor decrease anxiety. Findings support various broad strategies (i.e. increase awareness of statistics in psychology and confidence in success in the course) as opposed to skill-specific (better ways of teaching probability or using games to increase participation, for example) classroom interventions to improve statistics education.