89 resultados para 0105 Mathematical Physics
Resumo:
The existence of highly localized multisite oscillatory structures (discrete multibreathers) in a nonlinear Klein-Gordon chain which is characterized by an inverse dispersion law is proven and their linear stability is investigated. The results are applied in the description of vertical (transverse, off-plane) dust grain motion in dusty plasma crystals, by taking into account the lattice discreteness and the sheath electric and/or magnetic field nonlinearity. Explicit values from experimental plasma discharge experiments are considered. The possibility for the occurrence of multibreathers associated with vertical charged dust grain motion in strongly coupled dusty plasmas (dust crystals) is thus established. From a fundamental point of view, this study aims at providing a rigorous investigation of the existence of intrinsic localized modes in Debye crystals and/or dusty plasma crystals and, in fact, suggesting those lattices as model systems for the study of fundamental crystal properties.
Resumo:
The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge–Kutta method. The presence of chaotic limit cycles is pointed out.
Resumo:
The transport of charged particles in partially turbulent magnetic systems is investigated from first principles. A generalized compound transport model is proposed, providing an explicit relation between the mean-square deviation of the particle parallel and perpendicular to a magnetic mean field, and the mean-square deviation which characterizes the stochastic field-line topology. The model is applied in various cases of study, and the relation to previous models is discussed.
Resumo:
Let M be the Banach space of sigma-additive complex-valued measures on an abstract measurable space. We prove that any closed, with respect to absolute continuity norm-closed, linear subspace L of M is complemented and describe the unique complement, projection onto L along which has norm 1. Using this fact we prove a decomposition theorem, which includes the Jordan decomposition theorem, the generalized Radon-Nikodym theorem and the decomposition of measures into decaying and non-decaying components as particular cases. We also prove an analog of the Jessen-Wintner purity theorem for our decompositions.
Resumo:
We say that the Peano theorem holds for a topological vector space $E$ if, for any continuous mapping $f : {\Bbb R}\times E \to E$ and any $(t(0), x(0))$ is an element of ${\Bbb R}\times E$, the Cauchy problem $\dot x(t) = f(t,x(t))$, $x(t(0)) = x(0)$, has a solution in some neighborhood of $t(0)$. We say that the weak version of Peano theorem holds for $E$ if, for any continuous map $f : {\Bbb R}\times E \to E$, the equation $\dot x(t) = f (t, x(t))$ has a solution on some interval. We construct an example (answering a question posed by S. G. Lobanov) of a Hausdorff locally convex topological vector space E for which the weak version of Peano theorem holds and the Peano theorem fails to hold. We also construct a Hausdorff locally convex topological vector space E for which the Peano theorem holds and any barrel in E is neither compact nor sequentially compact.
Resumo:
We provide an explicit formula which gives natural extensions of piecewise monotonic Markov maps defined on an interval of the real line. These maps are exact endomorphisms and define chaotic discrete dynamical systems.
Resumo:
We develop two simple approaches to the construction of time operators for semigroups of continuous linear operators in Hilbert spaces provided that the generators of these semigroups are normal operators. The first approach enables us to give explicit formulas (in the spectral representations) both for the time operators and for their eigenfunctions. The other approach provides no explicit formula. However, it enables us to find necessary and sufficient conditions for the existence of time operators for semigroups of continuous linear operators in separable Hilbert spaces with normal generators. Time superoperators corresponding to unitary groups are also discussed.
Resumo:
We provide a sufficient condition of analyticity of infinitely differentiable eigenfunctions of operators of the form Uf(x) = integral a(x, y) f(b( x, y)) mu(dy) acting on functions f: [u, v] --> C ( evolution operators of one-dimensional dynamical systems and Markov processes have this form). We estimate from below the region of analyticity of the eigenfunctions and apply these results for studying the spectral properties of the Frobenius-Perron operator of the continuous fraction Gauss map. We prove that any infinitely differentiable eigenfunction f of this Frobenius-Perron operator, corresponding to a non-zero eigenvalue admits a (unique) analytic extension to the set C\(-infinity, 1]. Analyzing the spectrum of the Frobenius Perron operator in spaces of smooth functions, we extend significantly the domain of validity of the Mayer and Ropstorff asymptotic formula for the decay of correlations of the Gauss map.
Resumo:
We prove that the Frobenius-Perron operator $U$ of the cusp map $F:[-1,1]\to [-1,1]$, $F(x)=1-2 x^{1/2}$ (which is an approximation of the Poincare section of the Lorenz attractor) has no analytic eigenfunctions corresponding to eigenvalues different from 0 and 1. We also prove that for any $q\in (0,1)$ the spectrum of $U$ in the Hardy space in the disk $\{z\in C:|z-q|
Resumo:
We construct a countable-dimensional Hausdorff locally convex topological vector space $E$ and a stratifiable closed linear subspace $F$ subset of $E$ such that any linear extension operator from $C_b(F)$ to $C_b(E)$ is unbounded (here $C_b(X)$ stands for the Banach space of continuous bounded real-valued functions on $X$).
Resumo:
We study a family of chaotic maps with limit cases-the tent map and the cusp map (the cusp family). We discuss the spectral properties of the corresponding Frobenius-Perron operator in different function spaces including spaces of analytical functions and study numerically the eigenvalues and eigenfunctions.
Resumo:
An example of a sigma -compact infinite-dimensional pre-Hilbert space H is constructed such that any continuous linear operator T: H --> H is of the form T = lambdaI + F for some lambda is an element of R and for a finite-dimensional continuous linear operator F. A class of simple examples of pre-Hilbert spaces nonisomorphic to their closed hyperplanes is given. A sigma -compact pre-Hilbert space H isomorphic to H x R x R and nonisomorphic to H x R is also constructed.
Resumo:
A locally convex space X is said to be integrally complete if each continuous mapping f: [0, 1] --> X is Riemann integrable. A criterion for integral completeness is established. Readily verifiable sufficient conditions of integral completeness are proved.