202 resultados para fatty liver
Resumo:
The liver fluke, Fasciola hepatica is an economically important pathogen of sheep and cattle and has been described by the WHO as a re-emerging zoonosis. Control is heavily reliant on the use of drugs, particularly triclabendazole and as a result resistance has now emerged. The population structure of F. hepatica is not well known, yet it can impact on host-parasite interactions and parasite control with drugs, particularly regarding the spread of triclabendazole resistance. We have identified 2448 potential microsatellites from 83Mb of F. hepatica genome sequence using msatfinder. Thirty-five loci were developed and optimised for microsatellite PCR, resulting in a panel of 15 polymorphic loci, with a range of three to 15 alleles. This panel was validated on genomic DNA from 46 adult F. hepatica; 38 liver flukes sourced from a Northwest abattoir, UK and 8 liver flukes from an established isolate (Shrewsbury; Ridgeway Research). Evidence for null alleles was found at four loci (Fh_1, Fh_8, Fh_13 and Fh_14), which showed markedly higher levels of homozygosity than the remaining 11 loci. Of the 38 liver flukes isolated from cattle livers (n=10) at the abattoir, 37 genotypes were identified. Using a multiplex approach all 15 loci could be amplified from several life cycle stages that typically yield low amounts of DNA, including metacercariae, the infective life cycle stage present on pasture, highlighting the utility of this multiplex microsatellite panel. This study reports the largest panel of microsatellite markers available to date for population studies of F. hepatica and the first multiplex panel of microsatellite markers that can be used for several life cycle stages.
Resumo:
Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 μM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.
Resumo:
Production of fatty alcohols through selective hydrogenation of fatty acids was studied over a 4% ReOx/TiO2 catalyst. Stearic acid was hydrogenated to octadecanol at temperatures and pressures between 180-200 degrees C and 2-4 MPa, with selectivity reaching 93%. A high yield of octadecanol was attributed to a strong adsorption of the acid compared to alcohol on the catalyst, which inhibits further alcohol transformation to alkanes. Low amounts (<7%) of alkanes (mainly octadecane) were formed during the conversion of stearic acid. However, it was found that the catalyst could be tuned for the production of alkanes. The reaction intermediates were octadecanal and stearyl stearate. Based on the reaction products analysis and catalyst characterization, a reaction mechanism and possible pathways were proposed.
Resumo:
RATIONALE: Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune/inflammatory processes.
OBJECTIVES: To investigate the capacity of anaerobes to contribute to CF airway pathogenesis via SCFAs.
METHODS: Samples from 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFAs levels in anaerobe supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of SCFAs receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings, and 16HBE14o- and CFBE41o- cells were evaluated using RT-PCR, western blot, laser scanning cytometry and confocal microscopy. SCFAs-induced IL-8 secretion was monitored by ELISA.
MEASUREMENTS AND MAIN RESULTS: Fifty seven of 109 (52.3%) PWCF were anaerobe-positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF under (n=24) and over 6 years (n=85). All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic and butyric acid. SCFAs levels were higher in BAL samples from adults than children. GPR41 levels were elevated in; CFBE41o- versus 16HBE14o- cells; CF versus non-CF bronchial brushings; 16HBE14o- cells after treatment with CFTR inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin-sensitive IL-8 response in bronchial epithelial cells with a higher production of IL-8 in CFBE41o- than 16HBE14o- cells.
CONCLUSIONS: This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via upregulated GPR41.
Resumo:
Fasciolosis is an important foodborne, zoonotic disease of livestock and humans, with global annual health and economic losses estimated at several billion US$. Fasciola hepatica is the major species in temperate regions, while F. gigantica dominates in the tropics. In the absence of commercially available vaccines to control fasciolosis, increasing reports of resistance to current chemotherapeutic strategies and the spread of fasciolosis into new areas, new functional genomics approaches are being used to identify potential new drug targets and vaccine candidates. The glutathione transferase (GST) superfamily is both a candidate drug and vaccine target. This study reports the identification of a putatively novel Sigma class GST, present in a water-soluble cytosol extract from the tropical liver fluke F. gigantica. The GST was cloned and expressed as an enzymically active recombinant protein. This GST shares a greater identity with the human schistosomiasis GST vaccine currently at Phase II clinical trials than previously discovered F. gigantica GSTs, stimulating interest in its immuno-protective properties. In addition, in silico analysis of the GST superfamily of both F. gigantica and F. hepatica has revealed an additional Mu class GST, Omega class GSTs, and for the first time, a Zeta class member.
Resumo:
Donor-type microchimerism, the presence of a minority population of donor-derived haematopoietic cells following solid organ transplantation, has been postulated as a mechanism for induction of donor-specific graft tolerance. The stability, frequency, and relevance of microchimerism with respect to long-term outcome, however, remains uncertain. Using a polymerase chain reaction (PCR)-based method of microsatellite analysis of highly polymorphic short tandem repeat sequences (STRs) to detect donor-type cells, DNA from 11 patients was analyzed prospectively at specific time points for 12 months following liver transplantation, and from a further six patients retrospectively 2 years after liver transplantation. Using a panel of STRs, transient peripheral blood donor microchimerism was detected in 2 of 11 patients at a single time-point following transplantation, but persistent evidence of donor-derived cells was not observed during the study period. Analysis of DNA extracted from skin and duodenum in two patients likewise failed to show donor-type cells at these sites. None of the six patients in the retrospective arm showed donor microchimerism, resulting in an overall detection rate of 1.58%. These results suggest that donor microchimerism following liver transplantation is an infrequent event, and that the generation of graft tolerance is independent of microchimerism.