238 resultados para Supramolecular architecture
Resumo:
It has often been assumed that the islands of Orkney were essentially treeless throughout much of the Holocene, with any ‘scrub’ woodland having been destroyed by Neolithic farming communities by around 3500 cal. BC. This apparently open, hyper-oceanic environment would presumably have provided quite marginal conditions for human settlement, yet Neolithic communities flourished and the islands contain some of the most spectacular remains of this period in north-west Europe. The study of new Orcadian pollen sequences, in conjunction with the synthesis of existing data, indicates that the timing of woodland decline was not synchronous across the archipelago, beginning in the Mesolithic, and that in some areas woodland persisted into the Bronze Age. There is also evidence to suggest that woodland communities in Orkney were more diverse, and therefore that a wider range of resources was available to Neolithic people, than has previously been assumed. Recent archaeological investigations have revealed evidence for timber buildings at early Neolithic settlement sites, suggesting that the predominance of stone architecture in Neolithic Orkney may not have been due to a lack of timber as has been supposed. Rather than simply reflecting adaptation to resource constraints, the reasons behind the shift from timber to stone construction are more complex and encompass social, cultural and environmental factors.
Resumo:
Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
Resumo:
Architecture Description Languages (ADLs) have emerged in recent years as a tool for providing high-level descriptions of software systems in terms of their architectural elements and the relationships among them. Most of the current ADLs exhibit limitations which prevent their widespread use in industrial applications. In this paper, we discuss these limitations and introduce ALI, an ADL that has been developed to address such limitations. The ALI language provides a rich and flexible syntax for describing component interfaces, architectural patterns, and meta-information. Multiple graphical architectural views can then be derived from ALI's textual notation.
Resumo:
Software Product-Line Engineering has emerged in recent years, as an important strategy for maximising reuse within the context of a family of related products. In current approaches to software product-lines, there is general agreement that the definition of a reference-architecture for the product-line is an important step in the software engineering process. In this paper we introduce ADLARS, a new form of architecture Description language that places emphasis on the capture of architectural relationships. ADLARS is designed for use within a product-line engineering process. The language supports both the definition of architectural structure, and of important architectural relationships. In particular it supports capture of the relationships between product features, component and task architectures, interfaces and parameter requirements.
Resumo:
In this chapter Morrow talks of her return to Northern Ireland to 2003 and how her involvement in establishing a new school of architecture and a recent suite of interdisciplinary masters has led her to consider the relationship between the post-conflict context, architectural practice and its education. She examines the consequences of not facing the effects of conflict; the impact on societal and architectural creativity; and the potential for live project pedagogy to evolve effective models of socio-spatial rehearsals. She concludes with some strategies for schools of architecture that wish to feed and be fed by their context. This is a personalized commentary that teeters somewhere between deep-seated frustration with a blind-folded profession and sustained belief in architectural education’s potential to offer more than built solutions.
Resumo:
In the digital age, the hyperspace of virtual reality systems stands out as a new spatial concept creating a parallel realm to "real" space. Virtual reality influences one’s experience of and interaction with architectural space. This "otherworld" brings up the criticism of the existing conception of space, time and body. Hyperspaces are relatively new to designers but not to filmmakers. Their cinematic representations help the comprehension of the outcomes of these new spaces. Visualisation of futuristic ideas on the big screen turns film into a medium for spatial experimentation. Creating a possible future, The Matrix (Andy and Larry Wachowski, 1999) takes the concept of hyperspace to a level not-yet-realised but imagined. With a critical gaze at the existing norms of architecture, the film creates new horizons in terms of space. In this context, this study introduces science fiction cinema as a discussion medium to understand the potentials of virtual reality systems for the architecture of the twenty first century. As a "role model" cinema helps to better understand technological and spatial shifts. It acts as a vehicle for going beyond the spatial theories and designs of the twentieth century, and defining the conception of space in contemporary architecture.
Resumo:
In The City of Collective Memory, urban historian Christina Boyer (1994) defines the image of a city as an abstracted concept, an imaginary (re)constructed form. This urban image is created from many aspects, one of which is the framed and edited views and experiences found in films situated in or about a particular city. In this study, to explore the collective memory of the city of Berlin from an architectural point of view, one film from each of the major historical periods of Berlin since the invention of cinema is examined: pre-WWI, interwar period, the Nazi period, post-WWII, Berlin Wall/Cold War, and the reunification period. Memory-making in the city is studied following the footsteps of the protagonists in the films, concluding that film-making and memory-making make use of similar processes, the editing of fragmented pieces of so-called reality, to create its own reality.
Resumo:
In this paper, we have developed a low-complexity algorithm for epileptic seizure detection with a high degree of accuracy. The algorithm has been designed to be feasibly implementable as battery-powered low-power implantable epileptic seizure detection system or epilepsy prosthesis. This is achieved by utilizing design optimization techniques at different levels of abstraction. Particularly, user-specific critical parameters are identified at the algorithmic level and are explicitly used along with multiplier-less implementations at the architecture level. The system has been tested on neural data obtained from in-vivo animal recordings and has been implemented in 90nm bulk-Si technology. The results show up to 90 % savings in power as compared to prevalent wavelet based seizure detection technique while achieving 97% average detection rate. Copyright 2010 ACM.
Resumo:
In this paper, we present a novel discrete cosine transform (DCT) architecture that allows aggressive voltage scaling for low-power dissipation, even under process parameter variations with minimal overhead as opposed to existing techniques. Under a scaled supply voltage and/or variations in process parameters, any possible delay errors appear only from the long paths that are designed to be less contributive to output quality. The proposed architecture allows a graceful degradation in the peak SNR (PSNR) under aggressive voltage scaling as well as extreme process variations. Results show that even under large process variations (±3σ around mean threshold voltage) and aggressive supply voltage scaling (at 0.88 V, while the nominal voltage is 1.2 V for a 90-nm technology), there is a gradual degradation of image quality with considerable power savings (71% at PSNR of 23.4 dB) for the proposed architecture, when compared to existing implementations in a 90-nm process technology. © 2006 IEEE.
Resumo:
In this paper, we present a unified approach to an energy-efficient variation-tolerant design of Discrete Wavelet Transform (DWT) in the context of image processing applications. It is to be noted that it is not necessary to produce exactly correct numerical outputs in most image processing applications. We exploit this important feature and propose a design methodology for DWT which shows energy quality tradeoffs at each level of design hierarchy starting from the algorithm level down to the architecture and circuit levels by taking advantage of the limited perceptual ability of the Human Visual System. A unique feature of this design methodology is that it guarantees robustness under process variability and facilitates aggressive voltage over-scaling. Simulation results show significant energy savings (74% - 83%) with minor degradations in output image quality and avert catastrophic failures under process variations compared to a conventional design. © 2010 IEEE.
Resumo:
2-D Discrete Cosine Transform (DCT) is widely used as the core of digital image and video compression. In this paper, we present a novel DCT architecture that allows aggressive voltage scaling by exploiting the fact that not all intermediate computations are equally important in a DCT system to obtain "good" image quality with Peak Signal to Noise Ratio(PSNR) > 30 dB. This observation has led us to propose a DCT architecture where the signal paths that are less contributive to PSNR improvement are designed to be longer than the paths that are more contributive to PSNR improvement. It should also be noted that robustness with respect to parameter variations and low power operation typically impose contradictory requirements in terms of architecture design. However, the proposed architecture lends itself to aggressive voltage scaling for low-power dissipation even under process parameter variations. Under a scaled supply voltage and/or variations in process parameters, any possible delay errors would only appear from the long paths that are less contributive towards PSNR improvement, providing large improvement in power dissipation with small PSNR degradation. Results show that even under large process variation and supply voltage scaling (0.8V), there is a gradual degradation of image quality with considerable power savings (62.8%) for the proposed architecture when compared to existing implementations in 70 nm process technology.
Resumo:
Dendritic molecules have well defined, three-dimensional branched architectures, and constitute a unique nanoscale toolkit. This review focuses on examples in which individual dendritic molecules are assembled into more complex arrays via non-covalent interactions. In particular, it illustrates how the structural information programmed into the dendritic architecture controls the assembly process, and as a consequence, the properties of the supramolecular structures which are generated. Furthermore, the review emphasises how the use of non-covalent (supramolecular) interactions, provides the assembly process with reversibility, and hence a high degree of control. The review also illustrates how self-assembly offers an ideal approach for amplifying the branching of small, synthetically accessible, relatively inexpensive dendritic systems (e.g. dendrons), into highly branched complex nanoscale assemblies.
The review begins by considering the assembly of dendritic molecules to generate discrete, well-defined supramolecular assemblies. The variety of possible assembled structures is illustrated, and the ability of an assembled structure to encapsulate a templating unit is described. The ability of both organic and inorganic building blocks to direct the assembly process is discussed. The review then describes larger discrete assemblies of dendritic molecules, which do not exist as a single well-defined species, but instead exist as statistical distributions. For example, assembly around nanoparticles, the assembly of amphiphilic dendrons and the assembly of dendritic systems in the presence of DNA will all be discussed. Finally, the review examines dendritic molecules, which assemble or order themselves into extended arrays. Such systems extend beyond the nanoscale into the microscale or even the macroscale domain, exhibiting a wide range of different architectures. The ability of these assemblies to act as gel-phase or liquid crystalline materials will be considered.
Taken as a whole, this review emphasises the control and tunability that underpins the assembly of nanomaterials using dendritic building blocks, and furthermore highlights the potential future applications of these assemblies at the interfaces between chemistry, biology and materials science.
Resumo:
This booklet covers the itinerary and some of the findings of a day-long visit to Belfast on the 7th November 2014 by Peter Oborn; Vice President International of the Royal Institute of British Architects. His visit was in response to a motion submitted to the RIBA council (19.05.2014) calling for the suspension of the Israeli Association of United Architects from the International Union of Architects. Despite members of council speaking against the motion it was carried; 23 members voting for, 16 against, and 10 abstentions. Subsequently the RIBA came under considerable pressure to consider its position in such critical contexts. This visit to Belfast was part of a wider fact-finding mission and evidence taking. At its heart was the question: 'Is it appropriate for the institute (RIBA) to engage with communities facing civil conflict and/or natural disaster and, if so, how it can do so most effectively.' The visit was facilitated by Ruth Morrow, Professor of Architecture, School of Planning, Architecture & Civil Engineering, Queen's University Belfast, and Martin Hare, Royal Society of Ulster Architects (RSUA) president.