273 resultados para P Gene
Resumo:
Mutations in ZEB1 have been reported in posterior polymorphous corneal dystrophy (PPCD3; MIM #609141) and Fuchs' endothelial corneal dystrophy (FECD6; MIM #613270). Although PPCD and keratoconus are clinically and pathologically distinct, PPCD has been associated with keratoconus, suggesting a common genetic basis. The purpose of our study was to perform mutational screening of the ZEB1 gene in patients affected with keratoconus or PPCD.
Resumo:
<p>Caveolae are plasma membrane structures formed from a complex of the proteins caveolin-1 and caveolin-2. Caveolae interact with pro-inflammatory cytokines and are dysregulated in fibrotic disease. Although caveolae are present infrequently in healthy kidneys, they are abundant during kidney injury. An association has been identified between a CAV1 gene variant and long term kidney transplant survival. Chronic, gradual decline in transplant function is a persistent problem in kidney transplantation. The aetiology of this is diverse but fibrosis within the transplanted organ is the common end point. This study is the first to investigate the association of CAV2 gene variants with kidney transplant outcomes. Genomic DNA from donors and recipients of 575 kidney transplants performed in Belfast was investigated for common variation in CAV2 using a tag SNP approach. The CAV2 SNP rs13221869 was nominally significant for kidney transplant failure. Validation was sought in an independent group of kidney transplant donors and recipients from Dublin, Ireland using a second genotyping technology. Due to the unexpected absence of rs13221869 from this cohort, the CAV2 gene was resequenced. One novel SNP and a novel insertion/deletion in CAV2 were identified; rs13221869 is located in a repetitive region and was not a true variant in resequenced populations. CAV2 is a plausible candidate gene for association with kidney transplant outcomes given its proximity to CAV1 and its role in attenuating fibrosis. This study does not support an association between CAV2 variation and kidney transplant survival. Further analysis of CAV2 should be undertaken with an awareness of the sequence complexities and genetic variants highlighted by this study. p>
Resumo:
Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.
Resumo:
Small RNA-mediated chromatin silencing is well characterized for repeated sequences and transposons, but its role in regulating single-copy endogenous genes is unclear. We have identified two small RNAs (30 and 24 nucleotides) corresponding to the reverse strand 3' to the canonical poly(A) site of FLOWERING LOCUS C (FLC), an Arabidopsis gene encoding a repressor of flowering. Genome searches suggest that these RNAs originate from the FLC locus in a genomic region lacking repeats. The 24-nt small RNA, which is most abundant in developing fruits, is absent in mutants defective in RNA polymerase IVa, RNA-DEPENDENT RNA POLYMERASE 2, and DICER-LIKE 3, components required for RNAi-mediated chromatin silencing. The corresponding genomic region shows histone 3 lysine 9 dimethylation, which was reduced in a dcl2,3,4 triple mutant. Investigations into the origins of the small RNAs revealed a polymerase IVa-dependent spliced, antisense transcript covering the 3' FLC region. Mutation of this genomic region by T-DNA insertion led to FLC misexpression and delayed flowering, suggesting that RNAi-mediated chromatin modification is an important component of endogenous pathways that function to suppress FLC expression.
Resumo:
A single base deletion (211delG) in the low density lipoprotein receptor (LDLR) gene was shown to cause familial hypercholesterolaemia (FH) in a large family from Northern Ireland. Twenty-four of 52 family members tested had this mutation, 13 of which were newly diagnosed. Mutation-positive individuals had significantly higher mean total-cholesterol (TC) and LDL-cholesterol (LDL-C) than those without 211delG. LDL-C was a more accurate indicator of disease status than TC, When TC levels alone were considered, in individuals over 16 years, a false negative rate (TC <7.5 mmol/l) of 40% was found; however, this fell to 13% based on inclusion of LDL-C levels. Individuals with coronary artery disease (CAD) had significantly higher TC levels than those without CAD and tended to have tendinous xanthomas (TX) and corneal arcus (CA). Genetic polymorphisms in the angiotensin converting enzyme (ACE) and apolipoprotein (ape) B genes did not appear to be associated with lipid levels or with the clinical severity of the disease; however, the apo E e4 allele did show a lipid-raising effect in individuals with the mutation.
Resumo:
CCN2/CTGF is an established effector of TGFß driven responses in diabetic nephropathy. We have identified an interaction between CCN2 and TGFß leading to altered phenotypic differentiation and inhibited cellular migration. Here we determine the gene expression profile associated with this phenotype and define a transcriptional basis for differential actin related gene expression and cytoskeletal function.
Resumo:
Prior evidence has supported the existence of multiple susceptibility genes for schizophrenia. Multipoint linkage analysis of the 270 Irish high-density pedigrees that we have studied, as well as results from several other samples, suggest that at least one such gene is located in region 6p24-21. In the present study, family-based association analysis of 36 simple sequence-length-polymorphism markers and of 17 SNP markers implicated two regions, separated by approximately 7 Mb. The first region, and the focus of this report, is 6p22.3. In this region, single-nucleotide polymorphisms within the 140-kb gene DTNBP1 (dystrobrevin-binding protein 1, or dysbindin) are strongly associated with schizophrenia. Uncorrected, empirical P values produced by the program TRANSMIT were significant (P
Resumo:
A recent report showed significant associations between several SNPs in a previously unknown EST cluster with schizophrenia. (1). The cluster was identified as the human dystrobrevin binding protein 1 gene (DTNBP1) by sequence database comparisons and homology with mouse DTNBP1. (2). However, the linkage disequilibrium (LD) among the SNPs in DTNBP1 as well as the pattern of significant SNP-schizophrenia association was complex. This raised several questions such as the number of susceptibility alleles that may be involved and the size of the region where the actual disease mutation(s) could be located. To address these questions, we performed different single-marker tests on the 12 previously studied and 2 new SNPs in DTNBP1 that were re-scored using an improved procedure, and performed a variety of haplotype analyses. The sample consisted of 268 Irish multiplex families selected for high density of schizophrenia. Results suggested a simple structure where the LD in the target region could be explained by 6 haplotypes that together accounted for 96% of haplotype diversity in the whole sample. From these six, a single high-risk haplotype was identified that showed a significant association with schizophrenia and explained the pattern of significant findings in the analyses with individual markers. This haplotype was 30 kb long, had a large effect, could be measured with two tag SNPs only, had a frequency of 6% in our sample, seemed to be of relatively recent origin in evolutionary terms, and was equally distributed over Ireland. Implications of these findings for follow-up and replication studies are discussed.
Resumo:
The regulator of the G-protein signaling 4 (RGS4) gene was shown to have a different expression pattern in schizophrenia patients in a microarray study. A family-based study subsequently implicated the association of this gene with schizophrenia. We replicated the study with our sample from the Irish Study of High Density Schizophrenia Families (ISHDSF). Single marker transmission disequilibrium tests (TDT) for the four core SNPs showed modest association for SNP 18 (using a narrow diagnostic approach with FBAT P = 0.044; with PDT P = 0.0073) and a trend for SNP 4 (with FBAT P = 0.1098; with PDT P = 0.0249). For SNP 1 and 7, alleles overtransmitted to affected subjects were the same as previously reported. Haplotype analyses suggested that haplotype G-G-G for SNP1-4-18, which is the most abundant haplotype (42.3%) in the Irish families, was associated with the disease (narrow diagnosis, FBAT P = 0.0061, PDT P = 0.0498). This was the same haplotype implicated in the original study. While P values were not corrected for multiple testing because of the clear prior hypothesis, these results could be interpreted as supporting evidence for the association between RGS4 and schizophrenia.
Resumo:
The purpose of this study was to determine whether a haplotype in the dystrobrevin binding protein 1 (DTNBP1) gene previously associated with schizophrenia not only increases the susceptibility to psychotic illness but also to a more or less clinically specific form of psychotic illness.
Resumo:
Multiple lines of evidence suggest that schizophrenia results from aberrant neurodevelopment. The neurogenin1 gene (neurog1) consists of a single 1,666 bp exon that encodes a basic helix-loop-helix (bHLH) transcription factor that causes neuronal differentiation and induces cortical and glutamatergic differentiation programs. Because of its function and its location in 5q31.1, which has been linked to schizophrenia in multiple samples, we tested it for association with the disorder. We sequenced neurog1 in 25 affected subjects from the Irish Study of High-Density Schizophrenia Families. We observed a 5'-UTR SNP at position -60, already present in databases as rs8192558, and tested it along with rs2344485, rs8192559, and rs2344484. Narrow, intermediate, and broad diagnostic definitions were used. The major alleles of rs8192558 and rs2344484 were over-transmitted to affected subjects using both Pedigree Disequilibrium Test (PDT) (0.01 <or = P <or = 0.06) and FBAT (0.02 <or = P <or = 0.07). A haplotype consisting of the major alleles of all four SNPs was significantly over-transmitted in FBAT to the broad definition (P = 0.049), with trend significance to the narrow and intermediate definitions, and with trend significance in PDT. In confirmatory tests using 657 cases and 411 controls, this haplotype was slightly but not significantly over-represented in cases (81% vs. 77%, P = 0.21). These results, along with a priori evidence for the involvement of neurog1 in neurodevelopment, suggest that variants in neurog1 might have a small effect on susceptibility to schizophrenia. This gene should be tested in additional and larger samples.
Resumo:
Purpose: Polymorphisms in the vitamin D receptor (VDR) gene may be of etiological importance in determining cancer risk. The aim of this study was to assess the association between common VDR gene polymorphisms and esophageal adenocarcinoma (EAC) risk in an all-Ireland population-based case-control study. Methods: EAC cases and frequency-matched controls by age and gender recruited between March 2002 and December 2004 throughout Ireland were included. Participants were interviewed, and a blood sample collected for DNA extraction. Twenty-seven single nucleotide polymorphisms in the VDR gene were genotyped using Sequenom or TaqMan assays while the poly(A) microsatellite was genotyped by fluorescent fragment analysis. Unconditional logistic regression was applied to assess the association between VDR polymorphisms and EAC risk. Results: A total of 224 cases of EAC and 256 controls were involved in analyses. After adjustment for potential confounders, TT homozygotes at rs2238139 and rs2107301 had significantly reduced risks of EAC compared with CC homozygotes. In contrast, SS alleles of the poly(A) microsatellite had significantly elevated risks of EAC compared with SL/LL alleles. However, following permutation analyses to adjust for multiple comparisons, no significant associations were observed between any VDR gene polymorphism and EAC risk. Conclusions: VDR gene polymorphisms were not significantly associated with EAC development in this Irish population. Confirmation is required from larger studies. © Springer Science+Business Media, LLC 2011.
Resumo:
<p>High-dimensional gene expression data provide a rich source of information because they capture the expression level of genes in dynamic states that reflect the biological functioning of a cell. For this reason, such data are suitable to reveal systems related properties inside a cell, e.g., in order to elucidate molecular mechanisms of complex diseases like breast or prostate cancer. However, this is not only strongly dependent on the sample size and the correlation structure of a data set, but also on the statistical hypotheses tested. Many different approaches have been developed over the years to analyze gene expression data to (I) identify changes in single genes, (II) identify changes in gene sets or pathways, and (III) identify changes in the correlation structure in pathways. In this paper, we review statistical methods for all three types of approaches, including subtypes, in the context of cancer data and provide links to software implementations and tools and address also the general problem of multiple hypotheses testing. Further, we provide recommendations for the selection of such analysis methods.p>
Resumo:
<p>Background: Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take >2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping.p><p>Results: cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance.p><p>Conclusion: Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.p>
Resumo:
The factor-dependent cell line, TF-1, established from a patient with erythroleukaemia, shows characteristics of immature erythroblasts. Addition of granulocyte-macrophage colony stimulating factor (GM-CSF) to the culture medium is required for long-term growth of the cells. Erythropoietin (Epo) can also be used to sustain TF-1 cells but for only limited periods (approximately a week). Low levels of both growth factors can act synergistically to maintain proliferation for a longer period of time than Epo alone. To eliminate the requirement of exogenous Epo for growth, TF-1 cells were co-cultured with a retroviral secreting cell line containing the human erythropoietin (hEpo) gene and a neomycin (neo) selectable marker. TF-1 cells which exhibited neo resistance (indicating infection by the retrovirus) were then grown in low concentrations of GM-CSF without the addition of Epo. Under these conditions growth of normal TF-1 cells was not sustained. The neo-resistant cells survived for more than 14 days indicating synergy between GM-CSF and the Epo synthesised by the co-cultured TF-1 cells. Radioimmunoassays performed on growth media detected concentrations up to 1 mU/ml of Epo, implying that stable integration of the retroviral vector and expression of the hEpo gene have been achieved.