294 resultados para Martin, David


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buck, Richard T.; Doyle, Michael P.; Drysdale, Martin J.; Ferris, Leigh; Forbes, David C.; Haigh, David; Moody, Christopher J.; Pearson, Neil D.; Zhou, Qi-Lin. Dep. Chemistry, Loughborough Univ., Loughborough, Leicestershire, UK. Tetrahedron Letters (1996), 37(42), 7631-7634. Publisher: Elsevier, CODEN: TELEAY ISSN: 0040-4039. Journal written in English. CAN 125:328854 AN 1996:644681 CAPLUS (Copyright (C) 2009 ACS on SciFinder (R)) Abstract Decompn. of Me 2-diazophenylacetate in the presence of dimethylphenylsilane and a chiral dirhodium(II) catalyst results in Si-H insertion of the intermediate carbenoid to give PhCH(SiMe2Ph)CO2Me with varying degrees of enantioselectivity (up to 47% ee; 47% using (S)-Rh2L4, LH = I).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously identified differentially expressed genes in cell models of diabetic nephropathy and renal biopsies. Here we have performed quantitative DNA methylation profiling in cell models of diabetic nephropathy. Over 3,000 CpG units in the promoter regions of 192 candidate genes were assessed in unstimulated human mesangial cells (HMCs) and proximal tubular epithelial cells (PTCs) compared to HMCs or PTCs exposed to appropriate stimuli. A total of 301 CpG units across 38 genes (similar to 20%) were identified as differentially methylated in unstimulated HMCs versus PTCs. Analysis of amplicon methylation values in unstimulated versus stimulated cell models failed to demonstrate a >20% difference between amplicons. In conclusion, our results demonstrate that specific DNA methylation signatures are present in HMCs and PTCs, and standard protocols for exposure of renal cells to stimuli that alter gene expression may be insufficient to replicate possible alterations in DNA methylation profiles in diabetic nephropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These results cover dating undertaken since the last published list of dated building from Ireland (Brown (2002)); one English church building is also included in the list. Thanks are due to the owners of the buildings and especially to everyone who assisted in taking of the samples: Phil Barrett, Sapphire Mussen, Charles Lyons, Jon Pilcher and Mike Baillie, Amanda Pedlow, Caimin O’Brien and Martin Timoney. Most of the descriptions of the buildings are taken from the National Inventory of Architectural Heritage http://www.buildingofi reland.ie/. The correlation values were generated by CROSS84 (Munro, 1984), which provides a signifi cance level for the date to be correct; *** (extremely signifi cant), ** (very signifi cant), * (signifi cant), nsm (not signifi cant). Estimated felling date ranges are based on the Belfast sapwood estimate of 32 ± 9 years. Date ranges have been calculated by adding and subtracting 9 years from the calculated estimated felling dates. Timbers from the following buildings could not be dated. Cork: St Finbarre’s Cathedral (W 675 715); Dublin: Christchurch Cathedral (O 152 341); Galway: Cloghan Castle (M 972 119); Kilkenny: Rothe House (S 506 563); Offaly: Boveen House (S 075 956); Waterford: Christchurch Cathedral (S 616 121). Generally only single oak samples were recovered from these structures. References: D.Brown, ‘Dendrochronological dating building from Ireland’, VA 33 (2002), 71–3; M. Munro, ‘An improved algorithm for crossdating tree-ring series’, Tree-Ring Bulletin 44 (1984), 17–27.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine whether repression of a recently isolated, X-ray-responsive gene, DIR1, using antisense oligonucleotides could affect clonogenic cell survival and repair of DNA strand breaks and have a possible role in the mechanism underlying the phenomenon of 'induced radioresistance' (IRR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24), The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this. (C) 2000 by Radiation Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pericytes are known to communicate with endothelial cells by direct contact and by releasing cytokines such as TGF-beta. There is also strong evidence that pericytes act as regulators of endothelial cell proliferation and differentiation. We have investigated the effect of pericyte-conditioned medium (PCM) on proliferation of human microvascular endothelial cells in vitro, together with the expression of the vasoregulatory molecules, constitutive and inducible nitric oxide synthases (ecNOS and iNOS), and endothelin-1 (ET-1). Expression was measured at the mRNA level using semiquantitative RT-PCR for all three genes and at the protein level for ecNOS and iNOS using Western blotting. Growth curves for HMECs showed that PCM inhibits proliferation, eventually leading to cell death. Exposure to PCM repressed iNOS mRNA expression fivefold after 6 h. A similar, though delayed, reduction in protein levels was observed. ecNOS mRNA was slightly induced at 6 h, though there was no significant change in ecNOS protein. By contrast, ET-1 mRNA was induced 2.3-fold after 6 h exposure to PCM. We conclude that pericytes release a soluble factor or factors that are potent inhibitors of endothelial cell growth and promote vasoconstriction by up-regulating endothelin-1 and down-regulating iNOS. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we used optical coherence tomography (OCT) to extensively investigate, for the first time, the effect that microneedle (MN) geometry (MN height, and MN interspacing) and force of application have upon penetration characteristics of soluble poly(methylvinylether-co-maleic anhydride, PMVE/MA) MN arrays into neonatal porcine skin in vitro. The results from OCT investigations were then used to design optimal and suboptimal MN-based drug delivery systems and evaluate their drug delivery profiles cross full thickness and dermatomed neonatal porcine skin in vitro. It was found that increasing the force used for MN application resulted in a significant increase in the depth of penetration achieved within neonatal porcine skin. For example, MN of 600 µm height penetrated to a depth of 330 µm when inserted at a force of 4.4 N/array, while the penetration increased significantly to a depth of 520 µm, when the force of application was increased to 16.4 N/array. At an application force of 11.0 N/array it was found that, in each case, increasing MN height from 350 to 600 µm to 900 µm led to a significant increase in the depth of MN penetration achieved. Moreover, alteration of MN interspacing had no effect upon depth of penetration achieved, at a constant MN height and force of application. With respect to MN dissolution, an approximate 34% reduction in MN height occurred in the first 15 min, with only 17% of the MN height remaining after a 3-hour period. Across both skin models, there was a significantly greater cumulative amount of theophylline delivered after 24 h from an MN array of 900 µm height (292.23 ± 16.77 µg), in comparison to an MN array of 350 µm height (242.62 ± 14.81 µg) (p < 0.001). Employing full thickness skin significantly reduced drug permeation in both cases. Importantly, this study has highlighted the effect that MN geometry and application force have upon the depth of penetration into skin. While it has been shown that MN height has an important role in the extent of drug delivered across neonatal porcine skin from a soluble MN array, further studies to evaluate the full significance of MN geometry on MN mediated drug delivery are now underway. The successful use of OCT in this study could prove to be a key development for polymeric MN research, accelerating their commercial exploitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:
Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.
METHODS:
A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised.
RESULTS:
Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 µm and 900 µm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 µm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 µm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted.
CONCLUSION:
In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.