165 resultados para CORONARY
Resumo:
Background: More accurate coronary heart disease (CHD) prediction, specifically in middle-aged men, is needed to reduce the burden of disease more effectively. We hypothesised that a multilocus genetic risk score could refine CHD prediction beyond classic risk scores and obtain more precise risk estimates using a prospective cohort design.
Methods: Using data from nine prospective European cohorts, including 26,221 men, we selected in a case-cohort setting 4,818 healthy men at baseline, and used Cox proportional hazards models to examine associations between CHD and risk scores based on genetic variants representing 13 genomic regions. Over follow-up (range: 5-18 years), 1,736 incident CHD events occurred. Genetic risk scores were validated in men with at least 10 years of follow-up (632 cases, 1361 non-cases). Genetic risk score 1 (GRS1) combined 11 SNPs and two haplotypes, with effect estimates from previous genome-wide association studies. GRS2 combined 11 SNPs plus 4 SNPs from the haplotypes with coefficients estimated from these prospective cohorts using 10-fold cross-validation. Scores were added to a model adjusted for classic risk factors comprising the Framingham risk score and 10-year risks were derived.
Results: Both scores improved net reclassification (NRI) over the Framingham score (7.5%, p = 0.017 for GRS1, 6.5%, p = 0.044 for GRS2) but GRS2 also improved discrimination (c-index improvement 1.11%, p = 0.048). Subgroup analysis on men aged 50-59 (436 cases, 603 non-cases) improved net reclassification for GRS1 (13.8%) and GRS2 (12.5%). Net reclassification improvement remained significant for both scores when family history of CHD was added to the baseline model for this male subgroup improving prediction of early onset CHD events.
Conclusions: Genetic risk scores add precision to risk estimates for CHD and improve prediction beyond classic risk factors, particularly for middle aged men.
Resumo:
Objective
To examine age and gender specific trends in coronary heart disease (CHD) and stroke mortality in two neighbouring countries, the Republic of Ireland (ROI) and Northern Ireland (NI). Design Epidemiological study of time trends in CHD and stroke mortality.
Setting/patients
The populations of the ROI and NI, 1985–2010.
Interventions
None.
Main outcome measures
Directly age standardised CHD and stroke mortality rates were calculated and analysed using joinpoint regression to identify years where the slope of the linear trend changed significantly. This was performed separately for specific age groups (25–54, 55–64, 65–74 and 75–84 years) and by gender. Annual percentage change (APC) and 95% CIs are presented.
Results
There was a striking similarity between the two countries, with percentage change between 1985 and 1989 and between 2006 and 2010 of 67% and 69% in
CHD mortality, and 64% and 62% in stroke mortality for the ROI and NI, respectively. However, joinpoint analysis identified differences in the pace of change between the two countries. There was an accelerated pace of decline (negative APC) in mortality for both CHD and stroke in both countries from the mid-1990s (APC ROI −8% (95% CI −9.5 to 6.5) and NI −6.6% (−6.9 to −6.3)), but the accelerated decrease started later for CHD mortality in the ROI. In recent years, a levelling off in CHD mortality was observed in the 25–54 year age group in NI and in stroke mortality for men and women in the ROI.
Conclusions
While differences in the pace of change in mortality were observed at different time points, similar, substantial decreases in CHD and stroke mortality were achieved between 1985 and 1989 and between 2006 and 2010 in the ROI and NI despite important differences in health service structures. There is evidence of a levelling in mortality rates in some groups in recent years.
Resumo:
Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2)
Resumo:
Background
Chronic kidney disease is now regarded as a risk factor for cardiovascular disease. The impact of occupational or non-occupational physical activity (PA) on moderate decreases of renal function is uncertain.
ObjectivesWe aimed to identify the potential association of PA (occupational and leisure-time) on early decline of estimated glomerular filtration rate (eGFR) and to determine the potential mediating effect of PA on the relationship between eGFR and heart disease.
MethodsFrom the PRIME study analyses were conducted in 1058 employed men. Energy expended during leisure, work and commuting was calculated. Linear regression analyses were used to determine the link between types of PA and moderate decrements of eGFR determined with the KDIGO guideline at the baseline assessment. Cox proportional hazards analyses were used to explore the potential effect of PA on the relationship between eGFR and heart disease, ascertained during follow-up over 10 years.
ResultsFor these employed men, and after adjustment for known confounders of GFR change, more time spent sitting at work was associated with increased risk of moderate decline in kidney function, while carrying objects or being active at work was associated with decreased risk. In contrast, no significant link with leisure PA was apparent. No potential mediating effect of occupational PA was found for the relationship between eGFR and coronary heart disease.
ConclusionOccupational PA (potential modifiable factors) could provide a dual role on early impairment of renal function, without influence on the relationship between early decrease of e-GFR and CHD risk.
Resumo:
Background
Although life expectancy continues to increase in the Republic of Ireland (ROI) and Northern Ireland (NI), coronary heart disease (CHD) remains a leading cause of death and disability in older adults. Some, but not all, of the socioeconomic inequality in cardiovascular disability can be explained by a social gradient in conventional risk factors. The aims of the research were to assess CHD-related disability, and to establish the prevalence and population attributable fractions (PAFs) of risk factors for CHD-related disability across gender and socioeconomic groups in older adults in NI and ROI.
Resumo:
Background and Purpose-The aim was to investigate prospectively the all-cause mortality risk up to and after coronary heart disease (CHD) and stroke events in European middle-aged men.
Methods-The study population comprised 10 424 men 50 to 59 years of age recruited between 1991 and 1994 in France (N=7855) and Northern Ireland (N=2747) within the Prospective Epidemiological Study of Myocardial Infarction. Incident CHD and stroke events and deaths from all causes were prospectively registered during the 10-year follow-up. In Cox's proportional hazards regression analysis, CHD and stroke events during follow-up were used as time-dependent covariates.
Results-A total of 769 CHD and 132 stroke events were adjudicated, and 569 deaths up to and 66 after CHD or stroke occurred during follow-up. After adjustment for study country and cardiovascular risk factors, the hazard ratios of all-cause mortality were 1.58 (95% confidence interval 1.18-2.12) after CHD and 3.13 (95% confidence interval 1.98-4.92) after stroke.
Conclusions-These findings support continuous efforts to promote both primary and secondary prevention of cardiovascular disease.
Resumo:
OBJECTIVE: Despite rapid declines over the last two decades, coronary heart disease (CHD) mortality rates in the British Isles are still amongst the highest in Europe. This study uses a modelling approach to compare the potential impact of future risk factor scenarios relating to smoking and physical activity levels, dietary salt and saturated fat intakes on future CHD mortality in three countries: Northern Ireland (NI), Republic of Ireland (RoI) and Scotland.
METHODS: CHD mortality models previously developed and validated in each country were extended to predict potential reductions in CHD mortality from 2010 (baseline year) to 2030. Risk factor trends data from recent surveys at baseline were used to model alternative future risk factor scenarios: Absolute decreases in (i) smoking prevalence and (ii) physical inactivity rates of up to 15% by 2030; relative decreases in (iii) dietary salt intake of up to 30% by 2030 and (iv) dietary saturated fat of up to 6% by 2030. Probabilistic sensitivity analyses were then conducted.
RESULTS: Projected populations in 2030 were 1.3, 3.4 and 3.9 million in NI, RoI and Scotland respectively (adults aged 25-84). In 2030: assuming recent declining mortality trends continue: 15% absolute reductions in smoking could decrease CHD deaths by 5.8-7.2%. 15% absolute reductions in physical inactivity levels could decrease CHD deaths by 3.1-3.6%. Relative reductions in salt intake of 30% could decrease CHD deaths by 5.2-5.6% and a 6% reduction in saturated fat intake might decrease CHD deaths by some 7.8-9.0%. These projections remained stable under a wide range of sensitivity analyses.
CONCLUSIONS: Feasible reductions in four cardiovascular risk factors (already achieved elsewhere) could substantially reduce future coronary deaths. More aggressive polices are therefore needed in the British Isles to control tobacco, promote healthy food and increase physical activity.
Resumo:
Background: The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear.
Methods: We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes.
Results: We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis.
Conclusions: There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.)
Resumo:
Background: Long working hours might increase the risk of cardiovascular disease, but prospective evidence is scarce, imprecise, and mostly limited to coronary heart disease. We aimed to assess long working hours as a risk factor for incident coronary heart disease and stroke.
Methods We identified published studies through a systematic review of PubMed and Embase from inception to Aug 20, 2014. We obtained unpublished data for 20 cohort studies from the Individual-Participant-Data Meta-analysis in Working Populations (IPD-Work) Consortium and open-access data archives. We used cumulative random-effects meta-analysis to combine effect estimates from published and unpublished data.
Findings We included 25 studies from 24 cohorts in Europe, the USA, and Australia. The meta-analysis of coronary heart disease comprised data for 603 838 men and women who were free from coronary heart disease at baseline; the meta-analysis of stroke comprised data for 528 908 men and women who were free from stroke at baseline. Follow-up for coronary heart disease was 5·1 million person-years (mean 8·5 years), in which 4768 events were recorded, and for stroke was 3·8 million person-years (mean 7·2 years), in which 1722 events were recorded. In cumulative meta-analysis adjusted for age, sex, and socioeconomic status, compared with standard hours (35-40 h per week), working long hours (≥55 h per week) was associated with an increase in risk of incident coronary heart disease (relative risk [RR] 1·13, 95% CI 1·02-1·26; p=0·02) and incident stroke (1·33, 1·11-1·61; p=0·002). The excess risk of stroke remained unchanged in analyses that addressed reverse causation, multivariable adjustments for other risk factors, and different methods of stroke ascertainment (range of RR estimates 1·30-1·42). We recorded a dose-response association for stroke, with RR estimates of 1·10 (95% CI 0·94-1·28; p=0·24) for 41-48 working hours, 1·27 (1·03-1·56; p=0·03) for 49-54 working hours, and 1·33 (1·11-1·61; p=0·002) for 55 working hours or more per week compared with standard working hours (ptrend<0·0001).
Interpretation Employees who work long hours have a higher risk of stroke than those working standard hours; the association with coronary heart disease is weaker. These findings suggest that more attention should be paid to the management of vascular risk factors in individuals who work long hours.
Resumo:
Aims: To measure levels of intermedin and calcitonin gene-related peptide (CGRP) in acute coronary syndrome (ACS) and to determine if they are elevated.
Methods and results: 81 patients admitted with suspected ACS were enrolled into the study. 50 were confirmed ACS by ACC (2000) guidelines and 31 were in a control group as non-cardiac chest pain. Intermedin was nonsignificantly elevated 6.14 pg/ml vs 4.84 pg/ml b8 h in the ACS group; sensitivity 68%, specificity 63% on presenting sample. Intermedinwas significantly elevated in those patientswho had an initially negative troponin T (b0.03 ng/ml) on presentation, 6.67 pg/ml vs 4.84 pg/ml, p = 0.03. CGRP was significantly elevated in ACS patients, 8–b16 h after pain onset, 8.67 pg/ml vs 7.08 pg/ml, p= 0.036. However, it didn't aid diagnosis in initially negative troponin patients; sensitivity 61%, specificity 60% on presenting sample. Both intermedin and CGRP were elevated in STEMI patients on a first sample, but only intermedin was significantly elevated; 7.03 pg/ml vs 4.84 pg/ml, p =0.02 and 8.87 pg/ml vs 7.03 pg/ml p = 0.093, respectively. High sensitivity troponin T was significant elevated in the ACS group at b8 h (414.9 vs 17.22, p= 0.006) and at 8–b16 h (3325.27 vs 21.54, p = 0.02).
Conclusions: Both intermedin and CGRP are detectable in human patients. Levels showa trend to elevation in ACS, with CGRP being significantly raised N8 h after pain onset. The degree of elevation will have limited clinical applicability.